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Abstract

Road traffic leads to an externality: drivers do not account for the time cost they

impose on others. I study optimal congestion pricing in an urban general equilib-

rium model in which agents choose residential and workplace locations, travel modes,

and route choices with congestion. The attractiveness of workplaces and residences

is also determined endogenously. I provide conditions for the uniqueness of both the

competitive equilibrium and the first best planner’s problem and characterize the tax

instruments needed to decentralize it. I show how the model can be solved with arbi-

trary other taxes, including congestion toll zones. I apply these theoretical results to

New York City and find that the first best tax policy would realize gains of $0.77 per

person per day with substitution between driving and public transit as a key margin

of adjustment. 35% of the gains from optimal congestion pricing at the link level can

be achieved by a congestion zone that covers only lower Manhattan.

1 Introduction

The average travel speed by car in Midtown Manhattan in 2023 was 5 miles per hour.

Congestion affects cities globally, generating an externality as drivers do not account for

the time cost they impose on others. The textbook solution to correct this externality is
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to impose taxes that equalize the marginal social and private cost of using every road in a

city. How much do we stand to gain from such a policy? While theoretically optimal, real

world congestion pricing departs from the Pigouvian ideal. Cities such as London, Singapore,

Milan, and Stockholm have implemented toll zones or gates. How close can these types of

policy instruments take us to the first best solution? Travel times by car in turn affect

people’s other choices: the route they choose to commute, whether they drive or use public

transit, where they live and work. How do these margins of adjustment mediate the effects

of congestion pricing?

Correcting externalities from traffic congestion is a core policy problem in urban eco-

nomics but solving it in general equilibrium has remained challenging. I address this prob-

lem in an urban general equilibrium model and provide conditions for the uniqueness of

both the competitive equilibrium and the first best (utilitarian) planner’s problem as well as

characterizing the tax instruments needed to decentralize the optimal allocation. I also show

how the model can be solved with arbitrary taxes of the kind often implemented in practice,

such as toll zones, so that policy relevant pricing policies can be evaluated. I develop an

algorithm to solve each of these problems so that equilibrium and optimal allocations can be

computed and used to calculate welfare. I apply these theoretical results to New York City

to assess the welfare gains from optimal congestion pricing in practice.

The environment I study is a static urban general equilibrium model which features three

levels of choices by agents: routes, modes, and locations. Roads are represented by a network

over locations and, when driving, people choose a full path through the network from origin

to destination. These choices determine the flow of cars through each link in the network

and the resulting equilibrium travel speeds. People also choose a travel mode, accounting

for the equilibrium travel times on raods as well as on other modes. Finally, agents select

their residence and work location, where these choices are equilibrium outcomes jointly

determined with travel times. As in many urban models, the attractiveness of a location as

a home or workplace depends endogenously upon the number of people living or working

there. The supply of floor-space to firms or residents provides a key dispersion force: with

the supply of land fixed, floor-space becomes increasingly costly to provide. On the other

hand, agglomeration economies from knowledge spillovers, labor market pooling, or input

sharing may increase firm productivity in high density areas.

The complex interactions between the general equilibrium and transport parts of the

model pose a challenge both theoretically and computationally. Pigouvian taxes that equate

marginal private and social costs on each link are simple to state, but evaluating them in

actual cities requires knowledge of the first best flows on the entire network and so requires

solving the full planner’s problem. I use tools from convex optimization both to establish
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the uniqueness of the solution and to efficiently compute it by reducing its dimension using

a novel algorithm.

Turning to the competitive equilibrium problem, the presence of externalities leads to a

failure of the welfare theorems. I follow an approach first suggested in Samuelson (1947), in

which I characterize the equilibrium through an optimization problem: a pseudo-planner’s

problem. This allows the equilibrium to be handled using the same mathematical techniques

as the planner’s problem.

Finally, moving beyond Pigouvian taxes to consider second best policies, the problem

becomes more difficult. It is no longer sufficient to offset the externality on each road locally.

Instead, optimal use of ad-hoc policies must account for the spillovers to traffic on all other

roads in the network through the full equilibrium interactions of the model. Here too, casting

the equilibrium as an optimization problem is key. It allows the model to be solved with

arbitrary taxes so that second best policies can be evaluated numerically. In general, this

problem is computationally challenging, but in the case of a flat tax when entering a toll

zone it remains tractable to solve.

The main theoretical results of the paper are summarized in three propositions. The first

characterizes the planner’s problem, proving existence and providing sufficient conditions

for the uniqueness of the solution. The key to establishing uniqueness is to show that the

problem takes the form of a strictly concave optimization problem over a convex set. The

economic interpretation of these sufficient conditions follows the logic of other results in the

literature: the dispersion forces in the model must be at least as large as any agglomeration

forces. The second proposition establishes that the set of competitive equilibria of the model

is equal to the set of turning points of the Lagrangean of a pseudo-planner’s problem. This

applies both to the case where the equilibrium is unique and when there is multiplicity.

While the planner uses the marginal social cost in deciding how many cars to send along

a particular link, private individuals will instead simply use the time it takes to cross the

link (corresponding to the average cost). This wedge between marginal and average cost is

key in mapping competitive equilibria to turning points of the Lagrangean of the pseudo-

planner’s problem. The third proposition establishes existence and gives sufficient conditions

for uniqueness of the competitive equilibrium. Given the equivalence established in the

second proposition, the proof proceeds entirely analogously to the first by establishing strict

concavity of the problem.

Building on these three key results, I show how taxes can be incorporated, how the

solution to each problem can be computed, and how different margins of adjustment can be

decomposed. In a first corollary, I show that given a fixed but arbitrary set of taxes, the model

has a unique solution under the appropriate restrictions on parameters. This result follows
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almost immediately from propositions two and three: once the equilibrium is recognized as

the solution to an optimization problem, the addition of taxes poses no problem as it leaves

the concavity of the objective function unchanged. A second corollary provides expressions

for the taxes which decentralize the first best allocation. These correspond to the intuitive

Pigouvian logic of offsetting each externality where it is produced. While the expressions

for the taxes are simple, their levels depend on the optimal flows so that computing them in

real world cities requires solving a full planner’s problem.

The practical computation of the allocations in the planner, competitive equilibrium, and

taxed problems is simplified by the fact that they all share the same mathematical structure.

This means that a single algorithm can be used to solve all three. I use tools from convex

optimization, in particular duality theory, and analytical simplifications of the problem, to

solve a lower-dimensional, unconstrained problem. Finally, I show that it is possible to

solve the model fixing some of the agents’ decisions. In particular, it is possible to solve

for transportation choices, fixing the location decisions of individuals, or to solve only the

routing problem over the network, fixing both location and mode choice. This is important

in counterfactuals, to quantify the contribution of each margin in response to policy changes,

and in estimation, where it will be used as a key step in the identification of the parameters.

I then turn to an empirical application in which I use my theoretical results to study

optimal congestion pricing in New York City. This provides an ideal setting to illustrate

the framework for a number of reasons. Firstly, it provides a real world example in which

congestion pricing has been proposed as a policy tool and is, at the time of writing, under

review. Secondly, New York City has a highly developed public transit system, making

the substitution pattern between transit and driving of first order importance. Thirdly, road

traffic, especially in Manhattan, regularly ranks as among the worst in the US suggesting the

costs from congestion are potentially high. Finally, New York City is a data rich environment,

especially in terms of traffic flows. The Department of Transportation provides repeated

measurement of vehicular counts on over 2000 roads throughout the city at different times

of the day, which is unique among large US cities.

The estimation of the model’s parameters proceeds in three steps. Firstly, I fix some

parameters using estimates from the literature, most importantly the value of time, the

elasticity of substitution between modes, and floor-space supply elasticities. Secondly, I

use variation across hours of the day in both speed (from Google Maps API) and the flow

of vehicles (from the Department of Transportation) to estimate the congestion technology

using a flexible parametric form. Finally, I use data on commuting patterns between locations

with a maximum likelihood estimation approach to identify the attractiveness of residential

and workplace locations.
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Using the fitted model parameters I undertake counterfactuals to assess the potential

welfare gains from different congestion pricing policies in New York City. I find that first

best taxes yield a gain of $0.77 per person per weekday in 2019 dollars or a total of $21.7
million per week. 12% of these gains are realized when drivers are only allowed to change

their route through the network. 90% are achieved when agents are allowed to change both

their transport mode and driving route. The final 10% require location changes: individuals

moving their home and workplace location in response to congestion pricing. These results

highlight the importance of substitution across modes, with a non-negligible role for drivers

re-routing and general equilibrium effects. Finally, I assess the optimal level of a toll covering

only lower Manhattan. The model implies this should be set at $13.37 in 2019 dollars.

Inflating this to 2024 dollars this gives a figure of $16.38 which is similar in magnitude to the

$15 proposal for Manhattan rejected in June of 20241. The toll yields 35% of the potential

first best benefits. This suggests that substantial gains can be achieved even by relatively

simple pricing policies, but there remains scope for what could be achieved by more targeted

policies.

The remainder of the article is set out as follows. Section 2 discusses how the paper

relates to the literature. Section 3 presents the model and key theoretical results. Section 4

shows how the parameters of the model are estimated in the empirical application to New

York City. Section 5 undertakes counterfactuals using the fitted model. Section 6 concludes.

2 Related Literature

A growing literature has studied the economic effects of transportation policies (Almagro

et al. (2024); Durrmeyer and Martinez (2022); Barwick et al. (2024); Kreindler (2024)). I

build on this literature by retaining two key features of these models: endogenous congestion

and multiple transport modes. These papers also feature rich individual level heterogeneity,

both in terms of observable characteristics such as income, as well as in preferences. I abstract

from many of these differences to contribute along two dimensions. Firstly, I allow for a rich

set of route choices for drivers through the road network. This makes the impact of toll zones

or road taxes on commuters’ behavior unclear ex-ante: will the increased cost of traveling

through a particular area induce people to change routes to avoid them or will they switch

travel modes entirely? The model I develop allows these margins to be isolated separately.

Secondly, the model I present features full general equilibrium interactions between agents so

that location and residential decisions are determined jointly with congestion in commuting.

1The proposal was put forward in the Traffic Mobility Review Board (2023), it has subsequently been
changed to a $9 toll.
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The inclusion of general equilibrium location decisions is motivated by a large empirical

literature which finds substantial effects of transportation costs on the spatial distribution of

economic activity within cities. These papers have investigated the impact of access to public

transportation (Gibbons and Machin (2005); Billings (2011); Gonzalez-Navarro and Turner

(2018); Tsivanidis (2023)) as well as road infrastructure (Baum-Snow (2007); Baum-Snow

et al. (2017); Brinkman and Lin (2024)) on economic outcomes such as local population and

housing prices. The model I develop incorporates these general equilibrium forces into the

design of optimal congestion pricing policies.

A third strand of the literature to which I contribute analyzes optimal policy in models

featuring rich general equilibrium interactions and endogenous congestion. Three recent

papers in this group are Allen and Arkolakis (2022), Bordeu (2023), and Fajgelbaum and

Schaal (2020). All are concerned with the effects of infrastructure investment whereas the

present paper considers how to efficiently use existing infrastructure through congestion

pricing. I build on the route choice framework for commuting with endogenous congestion

from Allen and Arkolakis (2022) to incorporate multiple modes of transportation. I then use

the framework for a different purpose: to study optimal congestion pricing policy in general

equilibrium as well as second best tax policies. This requires solving both a planner’s problem

and the equilibrium problem with arbitrary taxes imposed, which are not studied in Allen

and Arkolakis (2022).

Perhaps the most closely related paper is Fajgelbaum and Schaal (2020). They study

optimal infrastructure investment in a network determining transportation in a neoclassical

trade model. Their model is focused on the transportation of goods, whereas the model

in the present paper is tailored towards commuting and so makes several different assump-

tions. My paper features multiple modes of transport as well as heterogeneity in consumers’

preferences over where to live and work, their transport mode and route which are absent

from Fajgelbaum and Schaal (2020) but a key feature of recent quantitative spatial models.

Similarly to Fajgelbaum and Schaal (2020), I use techniques from convex optimization to

characterize the solution to the model. However, an important distinction is that I am able

to establish the global strict concavity of my problem, not only for the social planner (or

with optimal taxes), but also in the equilibrium case without taxes or with arbitrary (non-

Pigouvian) taxes2. This allows me to provide guarantees on the existence and uniqueness

2At at technical level, there are also differences in the way the problem is formulated. I use a route
level formulation whereas Fajgelbaum and Schaal (2020) use flows along links. This allows me to avoid
imposing flow conservation constraints which are automatically fulfilled by the flow decomposition theorem
(see, for example, chapter 3 of Ahuja et al. (1988)). This is useful computationally. Moreover, by imposing
a parametric form on the shape of agglomeration economies I am able to state sharp sufficient conditions on
parameters for uniqueness in these cases.
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of the equilibrium as well an algorithm to compute it which are necessary to quantify the

potential gains from different congestion pricing policies.

The final literature I draw from is one which casts the equilibrium of models with exter-

nalities as the solution to an optimization problem. This is the key analytical device that

I use throughout the paper to establish results about the competitive equilibrium with or

without taxes. The welfare theorems show the connection between equilibria and Pareto op-

tima which solve a planner’s optimization problem. However, when these theorems fail, for

example due to externalities, a pseudo-planner’s problem may still provide a characterization

of the equilibrium problem. This idea, which dates back to Samuelson (1947), has been used

extensively within transportation research, beginning with the seminal work of Beckmann

et al. (1956). Casting transport equilibria as the solution to optimization problems has be-

come the dominant approach in a large literature synthesized in Sheffi (1985) and which is

still active (Akamatsu (1996, 1997); Baillon and Cominetti (2008); Oyama et al. (2022)).

This approach has also been widely used in macroeconomics to study models with taxes or

externalities. Kehoe et al. (1992) provide examples of how this can be done as well as many

references to the literature. The advantage of the approach is twofold. Firstly, it allows us

to study existence and uniqueness properties of the models using properties, in particular

concavity or convexity, of the associated optimization problem. Secondly, when formulated

as an optimization problem, finding algorithms to compute the solution of the problem can

draw from the rich literature in optimization theory. While the transportation literature

models trip demands as fixed or determined in partial equilibrium, the current paper applies

this approach in a novel setting to handle a general equilibrium urban model with multiple

modes, route, and location choice solving planner, decentralized and taxed problems.

3 Model

3.1 Consumers and Firms

Space is discrete and there is a finite set N = {1, . . . , N} of locations. Of these, a set

O ⊆ N are home locations and D ⊆ N are workplace locations. Note that these sets may

overlap, be disjoint, or comprise of all locations. I consider a closed city equilibrium with

a continuum of consumers of measure L. Consumers choose a home location o ∈ O and a

work location d ∈ D. They also choose how to commute between o and d. They choose a

mode m ∈ M and a route r ∈ Rodm. Consumers get utility at their home location from

residential attractiveness, uo, which they take as given but will be endogenous. They also

receive a wage wd which depends on their workplace as well as other sources of income b
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which do not depend on their location choices. They use their total income to consume a

single freely traded consumption good which is also the numéraire. Associated with each

mode m ∈ M and route r ∈ Rodm is a travel time todmr and consumers have a constant value

of time γ which translates the time cost into units of the consumption good. The disutility

from travel comes directly in the form of a utility cost of time commuting. This travel time

will be the endogenous result of other agents’ travel decisions because of congestion. Finally,

consumers have idiosyncratic preferences εodmr over home-workplace-mode-route tuples. The

consumer’s problem is given by

max
c∈R+,o∈O,d∈D,m∈M,r∈Rodm

uo + c− γtodmr + εodmr

s.t.

c ≤ wd + b .

I assume that the distribution of idiosyncratic preferences in the population follows a

nested logit distribution with the lower nest representing choices over routes r ∈ Rodm

conditional on location and mode choices, the second nest representing choices over modes

m ∈ M and the upper nest representing the choice over home-workplace pairs od ∈ O ×D.

For clarity I define the index set, S, of the realizations of the shock term ε̄ = (ε̄odmr)odmr∈S

as

S := {(o, d,m, r) : o ∈ O, d ∈ D,m ∈ M, r ∈ Rodm} .

A realization ε̄ takes values in RS . The random vector itself will be denoted ε. Formally,

the joint cumulative distribution function of ε is given by

P (εodmr ≤ ε̄odmr ∀odmr ∈ S) = exp

−
∑

od∈O×D

∑
m∈M

( ∑
r∈Rodm

exp (−ε̄odmr/σ)

)σ
ν

 ν
θ

 .

Note that, as usual, this is a function of ε̄. It gives the share of agents with a realization

of the random vector ε such that each element is less than or equal to the corresponding

element of ε̄. Since the total mass of agents in the population is L, the mass of agents with

realisation of εodmr ≤ ε̄odmr for all odmr ∈ S is then given by LP (εodmr ≤ ε̄odmr ∀odmr ∈ S).
I denote the density of P with respect to the Lebesgue measure by fε so that

∫
RS fε(ε̄)dε̄ = 1.

It is important to note that this is a deterministic model: each agent knows their own value

of ε and it is a feature of their preferences. The distributions above describe how these vary
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over the mass L.

σ is the scale parameter governing the lower nest choice over routes, ν the scale parameter

over modes and θ over locations. I assume throughout that θ > ν > σ to that the model

is consistent with utility maximization and belongs to the family of Generalized Extreme

Value models3. This implies that it is easier for individuals to substitute across different

commuting routes than it is for them to substitute across modes which is in turn easier than

changing workplace and home locations. Let ℓodmr denote the mass of consumers choosing

to live in workplace o ∈ O, work in d ∈ D and commute choosing mode m ∈ M along

route r ∈ Rod. Substituting the budget constraint into the consumer’s problem and making

use of the distributional assumption on preferences implies that the population shares will

satisfy the usual formula for nested logit choice probabilities. The deterministic utility for a

particular choice of odmr is given by

vodmr = b+ uo + wd − γtodmr ∀odmr ∈ S . (1)

Following the literature on discrete choice, I now also define the inclusive values4 for each

origin, destination, mode. Aggregating over routes this gives

vodm = σ ln
∑

r∈Rodm

exp(vodmr/σ) ∀odm ∈ O ×D ×M . (2)

Similarly, aggregating over modes, the inclusive value for an origin-destination pair is

given by

vod = ν ln
∑
m∈M

exp(vodm/ν) ∀od ∈ O ×D . (3)

Using standard results in discrete choice, the final choice shares are given by

ℓodmr
L

=
exp(vod/θ)∑

o′d′∈O×D exp(vo′d′/θ)

exp(vodm/ν)∑
m′∈M exp(vodm′/ν)

exp(vodmr/σ)∑
r′∈Rodm

exp(vodmr′/σ)
∀odmr ∈ S.

(4)

ℓodmr denotes the mass of agents making the choice odmr. The first term in (4) represents

the unconditional choice probability for a particular home-workplace pair, od. The second

term represents the choice probability of choosing mode m ∈ M conditional on location

choices. The third terms gives the conditional probability of route r ∈ Rodm given both

3See Train (2009) or Anderson et al. (1992) for details.
4This defines the expected utility over routes for an agent. See, for example, Train (2009) for further

discussion.
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mode and location choices. Workers take wages, wd, residential attractiveness, uo, and

travel times, todmr, as given and their choices are fully summarized by equations (1), (2), (3),

and (4).

In order to keep track of the employees at each work location and residents in each home

location I define the following aggregate variables for each o ∈ O and each d ∈ D:

ℓHo =
∑
m∈M

∑
dr∈D×Rodm

ℓodmr ∀o ∈ O , (5)

ℓFd =
∑
m∈M

∑
or∈O×Rodm

ℓodmr ∀d ∈ D . (6)

In each work location d, perfectly competitive fims use labor as the only input to produce

the freely traded consumption good5. Each location has an endogenous productivity level

Ad which firms take as given. The total output of firms in location d is given by

yd = Adℓ
F
d ∀d ∈ D . (7)

The free entry condition implies that wages are given by

wd = Ad ∀d ∈ D . (8)

In each workplace productivities emerge endogenously from the number of workers in

that location and are given by

Ad = Ād + αd ln ℓ
F
d ∀d ∈ D . (9)

where αd governs the semi-elasticity of productivity with respect to the number of workers.

In a home location, o, residential attractiveness results from the number of residents in

that location

uo = ūo + βo ln ℓ
H
o ∀o ∈ O , (10)

Whether the endogenous residential attractiveness and productivities are internalized by

agents through market interactions or are fully external to their decisions will be key in

comparing the equilibrium to the first best planner’s problem and this will depend upon the

particular micro-foundations that are used. Duranton and Puga (2004) provide a variety of

5Appendix B presents a model in which firms use both labor and land in a constant returns technology
to model the case where all scale effects are internalized through market interactions. The formal equations
from that model are isomorphic to those presented in the main text.
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micro-foundations which lead to externalities from agglomeration through matching, sharing

and learning. I provide a fully internalized micro-foundation in Appendix B based on the

supply of floor-space to households and firms. In this case, rents to land are rebated uniformly

to consumers leading to non-wage income. In order to keep track of whether the model’s

general equilibrium relationships are internalized or not I introduce the following notation:

1I =

1 if αd, βo are fully internalized

0 if αd, βo are fully external
.

This leads to the following reduced form relationship for non-wage income:

b = 1I

[
−
∑

d∈D ℓ
F
d αd −

∑
o∈O ℓ

H
o βo

L

]
. (11)

In the case of the rental market for floorspace microfoundation −
∑

d∈D ℓ
F
d αd−

∑
o∈O ℓ

H
o βo

corresponds exactly to the total rents that accrue to land which are divided evenly among

the population of size L.

3.2 Transport

When making transportation decisions, consumers choose both a mode and a route. I assume

that the set of modes is finite and given by a set M. I assume that some of the modes are

uncongested and have a fixed route and denote these by M0 ⊆ M. Other modes require

route choice and are subject to congestion, denoted M1. M0 and M1 partition M and

in the empirical application M0 = {m0} will denote public transit and M1 = {m1} will

denote driving. Given a particular mode m ∈ M1 where route choice is required, routes are

described by a directed network over the set of locations (N , Em) where N is the same set of

locations as in the previous section and Em ⊆ N ×N is a set of directed links describing the

transport connections between locations. I assume throughout that for each mode in M1,

the network is strongly connected so that for any locations i, j ∈ N there exists a directed

path6 from i to j. Let Rodm denote the set of all paths from o ∈ O to d ∈ D using mode

m ∈ M1 that have a length of no more than K ∈ N. I assume that K is large and formally

consider the behaviour of the model in the limit as K → ∞ in Appendix B7. In particular,

K must be large enough that the network remains connected when we restrict attention to

6Throughout I use the term path to denote any sequence of links connecting an origin to a destination
allowing for cycles. This is sometimes referred to as a walk in the graph theory and network literature.

7Restricting attention to finite route sets allows all the analytical results to be presented using finite di-
mensional analysis, substantially simplifying the technical details without loss of economic insight. Appendix
B shows that the K → ∞ limit is well-behaved under explicitly stated assumptions on model primitives.
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these paths. Given a link ij ∈ Em and a route r ∈ Rodm let nodmij,r denote the number of times

that the link ij occurs on route r between origin o ∈ O and destination d ∈ D for mode

m ∈ M. Note that nodmij,r may be zero if a link does not occur on a particular route and may

be greater than one if a link occurs multiple times along a route due to cycles. As in the

previous section, ℓodmr denotes the mass of commuters choosing mode m ∈ M and route

r ∈ Rodm to travel to work.

With these definitions, we can now define how journey times emerge endogenously as a

result of the decisions of commuters through the transport network. For M1, the time along

a route is given by the sum of the time it takes to cross each of its links. For M0 the times

are fixed. This leads to

todmr =


∑

ij∈Em n
odm
ij,r tijm if m ∈ M1

φt̄odm if m ∈ M0

∀odmr ∈ S (12)

Note that the times for crossing each of the links are weighted by the number of times

they occur on the path, nodmij,r . The parameter φ represents the value of time spent on

congested roads relative to uncongested modes. In the empirical application it will allow me

to scale the costs associated with using public transit relative to those for driving to match

the aggregate shares on each mode.

For a particular mode, the flow of traffic along a link ij is given by the sum of flows along

all paths, weighted by the number times ij occurs on each. This gives

xijm =
∑

od∈O×D

∑
rRodm

nodmij,r ℓodmr ∀m ∈ M1, ∀ij ∈ Em (13)

Finally, the time it takes to cross a particular link in the network is an increasing function

of the amount of traffic flowing across that link for that mode, namely

tijm = sijm(xijm) ∀m ∈ M1,∀ij ∈ Em (14)

That is, sijm(.) determines how traffic flows affect travel times and therefore provides

congestion in the model.

The following assumption is made throughout:

Assumption 1. sijm is differentiable and s′ijm(x) > 0 for all x ≥ 0 ∀m ∈ M1, ∀ij ∈ Em

No parametric restrictions need to placed on the congestion technology for the anlaytical

results in the paper. In particular, it is not assumed to constant elasticity, either within or

across links and the empirical application will make use of this fact to fit a flexible congestion
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technology across links. Also note that the model only allows congestion to operate through

links of the same mode. For example, buses and cars occupying the same lanes and being

subject to cross-congestion is excluded. In the empirical application, modes are separated

between driving and public transit, which is predominantly rail and subway, so that cross-

congestion is a less central issue8.

3.3 Market Clearing and Equilibrium

The final condition that must be imposed is goods market clearing which requires

∑
odmr∈S

ℓodmr(wd + b) =
∑
d∈D

yd + 1I

[
−
∑
d∈D

ℓFd αd −
∑
o∈O

ℓHo βo

]
. (15)

The term on the left hand side represents the total income of consumers which is com-

posed of wage and non-wage income which they spend on the final good. When 1I = 0,

corresponding to the case where αd, βo are externalities, b = 0 and total output is given by∑
d yd.

In the case of the floor-space micro-foundations presented in Appendix B, 1I = 1, and b >

0. In this model, total output is not given only by
∑

d yd. The
[
−
∑

d∈D ℓ
F
d αd −

∑
o∈O ℓ

H
o βo

]
term represents the total amount of the final good used in payments to land by firms and

households. These resources are not used up, but rather act as a transfer between agents,

and contribute to the total stock of the final good available for consumption. (15) represents

an equivalent condition to goods market clearing in that model. This is formally established

in (B.3.5) but (15) is used in the main development of the text to avoid presenting the full

set of micro-foundations.

We can now state the definition of an equilibrium for the city.

Definition 1 (Competitive Equilibrium).

A competitive equilibrium is a set of quantities ({ℓodmr}{ℓFd }, {ℓHo }, {yd}{xijm}), wages {wd},
travel times ({todmr}{tij}) and inclusive values ({vodmr}, {vodm}, {vod}) such that:

1. Consumers optimize as in (1), (2), (3), and (4)

2. Competitive firms optimize given their production technology as in (7) and (8).

3. Wages, productivities, residential attractiveness, and non-wage incomes are determined

endogenously by (8), (9), (10), and (11).

8Cross-congestion can be handled in traffic models, and the extension would require tools of the type
developed in Dafermos (1980).
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4. Traffic flows and travel times are given endogenously by (12), (13), and (14).

5. Residential and workplace labor markets and final goods markets clear so that (5), (6)

and (15) hold.

The competitive equilibrium features rich interactions between location decisions and

the commuting choices and travel times. These operate through residential attractiveness,

uo, productivities Ad, and travel times tij which are all endogenously determined by agents

choices. When the time taken to travel between an od pair increases, fewer agents will wish

to travel between them, endogenously affecting their attractiveness as home and workplaces

through uo and Ad. Conversely, changes to uo and Ad change the structure of commutes

which endogenously affects travel times tij through the flow of traffic on all links in the

network. The simultaneous determination of all these variables is characterized by the system

of equations (1)-(15).

3.4 A Planner’s Problem

I now set up a utilitarian social planner’s problem for the economy presented above. I will

allow the social planner to observe the full set of shocks for each agent in the economy. Given

a particular value of the shocks, ε̄, the planner may choose the residence, workplace, mode,

route and consumption of each agent. That is they choose a function9 a : RS → S × R+

where ε̄ 7→ (o, d,m, r, c). Under the mapping a(.) denote the values of (o, d,m, r, c) it gives

as a function of ε̄ by
(
õ(ε̄), d̃(ε̄), m̃(ε̄), r̃(ε̄), c̃(ε̄)

)
. These choices generate aggregate level

variables which much respect the same feasibility constraints as in the economy given above.

In particular, the function a generates an aggregate level of consumption c ∈ R+, flows of

commuters {ℓodmr}, residential aggregates {ℓHo } and workplace aggregates {ℓHd } as well as

traffic flows {xijm} and travel times at the link and route level {tijm}, {todmr}.
Setting up the problem in this way gives the planner the full set of information available

to agents, including knowing the exact values of all their idiosyncratic preferences. I also

do not explicitly enforce a spatial mobility constraint of the kind used in Fajgelbaum and

Gaubert (2020). The planner may assign all individuals where to live, work, how to commute

and how much to consume, respecting only the feasibility constraints of the economy defined

above. The planner’s knowledge and abilities are broad and of limited practical feasibility. It

is therefore crucial to establish that the results can be decentralized using a more reasonable

set of tax instruments which do not depend on knowing individual shock realizations and

allow agents to freely choose their location and commuting decisions. I show this in Corollary

9The function a should be Lebesgue measurable to ensure all integrals are well defined since ε has a
density over RS . I denote the set of all such functions as A
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2 below. Studying the more general problem shows that these taxes achieve the first best

solution subject only to feasibility constraints. The reason such results are possible relies

on several of the model’s key assumptions. Most important is the additive separability of

utility in time, consumption and idiosyncratic preferences. This means that the marginal

utility of consumption as well as the value of time are constant. While these assumptions

are strong, the tractability they buy allows progress to be made on an otherwise difficult

problem. Formally, the planner’s problem can be stated as follows.

Definition 2 (Utilitarian Planner’s Problem).

max
a(.), c, {ℓodmr},

{ℓFd }, {ℓ
H
o }, {xijm}

{tijm}, {todmr}

L

∫
RS

(
uõ(ε̄) + c̃(ε̄)− γtõ(ε̄)d̃(ε̄)m̃(ε̄)r̃(ε̄) + ε̄õ(ε̄)d̃(ε̄)m̃(ε̄)r̃(ε̄)

)
fε(ε̄)dε̄ (16)

s.t.

L

∫
RS
c̃(ε̄)fε(ε̄)dε̄ = c , (17)

L

∫
RS
1

{(
õ(ε̄), m̃(ε̄), d̃(ε̄), r̃(ε̄)

)
= (o, d,m, r)

}
fε(ε̄)dε̄ = ℓodmr ∀odmr ∈ S , (18)∑

odmr∈S

ℓodmr = L , (19)∑
m∈M

∑
dr∈D×Rodm

ℓodmr = ℓHo ∀o ∈ O , (20)∑
m∈M

∑
or∈O×Rodm

ℓodmr = ℓHd ∀d ∈ D , (21)

todmr =


∑

ij∈Em n
odm
ij,r tijm if m ∈ M1

φt̄odm if m ∈ M0

∀odmr ∈ S , (22)

xijm =
∑

od∈O×D

∑
rRodm

nodmij,r ℓodmr ∀m ∈ M1,∀ij ∈ Em , (23)

tijm = sijm(xijm) ∀m ∈ M1,∀ij ∈ Em , (24)

uo = ūo + βo ln ℓ
H
o ∀o ∈ O , (25)

c =
∑
d∈D

(Ād + αd ln ℓ
F
d )ℓ

F
d + 1I

[
−
∑
d∈D

ℓFd αd −
∑
o∈O

ℓHo βo

]
. (26)

(16) integrates the utility that each agent with utility shocks ε̄ gets according to the
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distribution of the shocks in the population fε under the choice of assignment a ∈ A. (17)

enforces that individual consumption assignments are consistent with the aggregate level of

consumption c. Similarly, (18) ensures that the aggregate level of commuter flows ℓodmr are

consistent with the individual level assignments of shocks to routes. (19) enforces that the

total population equals the mass of available workers L. (20) and (21) enforce workplace and

residential aggregates agree with the commuter flows. (22), (23), and (24) impose endogenous

congestion. (25) requires that residential attractiveness be given endogenously. (26) requires

that consumption equal total production with endogenous productivities substituted in. In

the case where 1I = 1, the addition of the
[
−
∑

d∈D ℓ
F
d αd −

∑
o∈O ℓ

H
o βo

]
represents the full

production of the city. Appendix B shows the details of this in the case of floor-space

provision, where the term represents the fact that land is owned by the residents of the city.

The utilitarian planner’s problem can be substantially simplified so that we can restrict

attention to solving only for the variable ℓ := (ℓodmr)odmr∈S ∈ RS . In order to do this, I first

show that all other variables in the optimization problem, apart from a(.) can be written

purely as a function of ℓ. This follows by recursively applying the constraints to define

functions as follows:

ℓHo (ℓ) :=
∑
m∈M

∑
dr∈D×Rodm

ℓodmr ∀o ∈ O , (27)

ℓHd (ℓ) =
∑
m∈M

∑
or∈O×Rodm

ℓodmr ∀d ∈ D , (28)

ℓodm(ℓ) :=
∑
r∈M

ℓodmr ∀od ∈ O ×D,∀m ∈ M , (29)

ℓod(ℓ) :=
∑
m∈M

∑
r∈Rodmr

ℓodmr ∀od ∈ O ×D , (30)

xijm(ℓ) :=
∑

od∈O×D

∑
r∈Rodm

nodmij,r ℓodmr ∀m ∈ M1,∀ij ∈ Em , (31)

tijm(ℓ) := sijm(xijm(ℓ)) ∀m ∈ M1,∀ij ∈ Em , (32)

todmr(ℓ) :=


∑

ij∈Em n
odm
ij,r tijm(ℓ) if m ∈ M1

φt̄odm if m ∈ M0

∀odmr ∈ S . (33)

With these definitions in hand, the simplification of the planner’s problem is established

in the following lemma:

Lemma 1 (Simplifying the Planner’s Problem).
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ℓ := (ℓodmr)odmr∈S ∈ RS is a solution to the Utilitarian Planner’s Problem if and only if

it solves

max
ℓ∈[0,L]S

∑
o

(∑
d

ℓod(ℓ)

)[
ūo − 1Iβo + βo ln

(∑
d

ℓod(ℓ)

)]

+
∑
d

(∑
o

ℓod(ℓ)

)[
Ād − 1Iαd + αd ln

(∑
o

ℓod(ℓ)

)]
− γ

∑
m∈M1

∑
ij∈Em

xijm(ℓ)sijm(xijm(ℓ))

− γ
∑
od

∑
m∈M0

φt̄odmℓodmr

− (θ − ν)
∑
od

ℓod(ℓ) ln (ℓod(ℓ))

− (ν − σ)
∑
odm

ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.

∑
odmr∈S

ℓodmr = L .

where ℓodm(ℓ), ℓodm(ℓ) and xijm(ℓ) are given by definitions (31), (32), and (33) above.

Proof. See Appendix A

The simplification of the planner’s problem makes use of three key steps. Firstly, since

utility is linear in consumption and additively separable from the idiosyncratic term, the

planner will not care about the distribution of consumption over individuals and will only

seek to maximize total output. This means that the production technology for the economy

can be plugged directly into the objective function for the problem.

The second key step is to note that fixing the aggregate variables ℓodmr, the problem of how

to assign ε realisations to different odmr tuples is a well studied problem10. Intuitively, the

planner will assign individuals with realizations of εodmr that are high relative to alternative

10Variations of this problem have been studied in Anderson et al. (1992), Hofbauer and Sandholm (2002),
Maher et al. (2005), Cameron et al. (2007), Galichon and Salanié (2022) and Donald et al. (2023) with
similar results being rediscovered independently. I use the results proved in Galichon and Salanié (2022).

17



o′d′m′r′ to odmr. Formally, this is an optimal transport problem, and the key implication

is that the value function for the inner problem can be used to solve out for the function

a(.). This means that we need only consider the more tractable problem of optimizing over

aggregate flows ℓodmr.

The particular form of the value function for the inner problem will depend on the

distribution of ε. This can be seen in the final final three terms in Lemma 1. For intuition,

consider the first of these terms: −(θ − ν)
∑

od ℓod ln ℓod. Considered in isolation, this term

reaches a maximum when ℓod is completely evenly distributed: everyone is sent to the od pair

for which they have the highest shock realization. As the planner concentrates more people

along a particular od pair, for example because productivities or residential attractiveness

are high there, the planner is forced to draw from lower and lower in the shock distribution

leading to less utility from idiosyncratic preferences. This acts as a dispersion force in the

planner’s problem, leading flows to be spread more evenly across locations, modes, and routes

than they would be in the absence of idiosyncratic preferences.

The final step involves using definitions (27)-(33) and rearranging the constraints to get

the desired expression. It is important to note how this simplification makes the problem

tractable. In the initial formulation, we were required to choose a whole function a(.) as-

signing each realization of the shock to a particular odmr and level of consumption. Lemma

1 shows that this reduces to a finite-dimensional optimization problem over a compact set

with a single linear constraint. This makes the problem highly tractable and allows the use

of standard techniques in optimization theory to establish both existence and uniqueness.

3.5 Existence and Uniqueness

3.5.1 The Planner’s Problem

This section presents the main theoretical results of the paper. I prove existence and unique-

ness results for both the social planner and decentralized equilibrium problems and provide

an algorithm to compute them.

Proposition 1 (Existence and Uniqueness for the Planner’s Problem). Under Assumption

1, a solution to the planner’s problem exists. The solution for {ℓodmr}, {ℓFd }, {ℓHo }, {xijm},
{tijm}, {todmr} and total welfare is unique if

θ − ν > max
o,d∈O×D

{αd + βo, αd, βo}

xsijm(x) is strictly convex in x ∀m ∈ M1, ∀ij ∈ Em

Proof. See Appendix A
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Note that, as shown in Lemma 1, the distribution of consumption is not pinned down

uniquely in the planner’s problem since utility is linear in c and so the planner is indifferent

between different distributions of the consumption good. The remaining aggregate variables

are unique under the stated condition.

Existence is established by showing that the optimization problem is the maximization

of a continuous function over a compact set. Uniqueness is shown by proving that the

objective function is strictly concave over a convex set so that any optimum is unique. The

proof proceeds by analyzing the components of the objective function piece by piece. The

main terms that have the potential to cause non-concavity are the first two terms in Lemma

1. Economically, when αd, βo > 0, these represent the agglomeration forces in the model.

When more people enter a place to live or work this leads the location to become more

attractive as a home or workplace. This can lead to multiplicity. When people concentrate

in a particular od pair, that remains attractive due to the benefits of agglomeration so that

no-one wishes to relocate in equilibrium. However if people had concentrated in a different

pair o′d′ these would instead become attractive and give rise to a different equilibrium.

To offset these agglomeration forces a dispersion force across od pairs is required. Prefer-

ence heterogeneity across od pairs through θ, net of the variation coming over modes through

ν, provides this force. This can also be seen through the formulation of the problem as an

optimization problem. The −(θ−ν)
∑

od ℓod(ℓ) ln (ℓod(ℓ)) is strictly concave in ℓod and, math-

ematically, makes the problem more concave. Economically, as people initially concentrate

in a particular origin-destination pair od, only those with a high idiosyncratic preference

for od move there. As ℓod increases however, the idiosyncratic component of their utility is

drawn from lower down the shock distribution making the location less and less attractive

for the marginal mover. The condition in the statement of the proposition formalizes the

balance of these forces. When the dispersion force across od pairs are sufficiently high they

will dominate. To derive this condition I make use of results on diagonally dominant matrices

to sign the Hessian of these terms.

The other terms in the optimization problem do not pose a problem for concavity. Prefer-

ence heterogeneity across modes and routes as well as congestion from traffic act as dispersion

forces and make the problem strictly concave. The second condition in the statement of the

proposition on the strict convexity of xsijm(x) is relatively mild. It is satisfied whenever the

marginal cost to the planner of sending a person along a link, given by sijm(x) + xs′ijm(x) is

increasing. This is the analogue for the planner’s problem of the condition in Assumption

1. It does not impose any functional form assumptions on sijm but is satisfied by many that

are commonly used in practice. For example, if s(x) = a + bxc, it holds whenever b, c > 0.

It is important to note that these results allows for further flexibility in estimation than is
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pursued in this paper: non-parametric approaches, which impose only shape restrictions on

sijm are compatible with the framework.

3.5.2 The Competitive Equilibrium

I now turn to the problem of characterizing the equilibrium of the model. The first step

in this will be to show that the equilibria of the model correspond to turning points of the

Lagrangean of a distorted planner’s problem. I first define the pseudo-planner’s problem and

then discuss the intuition for why its turning points coincide with the equilibria of the model.

I will cast the distorted planner’s problem purely in terms of the vector ℓ := (ℓodmr)odmr∈S

as this will turn out to be useful. In order to do so it is useful to note that all other variables

in the model can be viewed as a function of ℓ alone.

Definition 3 (Distorted Planner’s Problem).

Define the distorted planner’s problem as:

max
ℓ∈[0,L]S

f(ℓ) :=
∑
o

(∑
d

ℓod(ℓ)

)[
ūo − βo + βo ln

(∑
d

ℓod(ℓ)

)]

+
∑
d

(∑
o

ℓod(ℓ)

)[
Ād − αd + αd ln

(∑
o

ℓod(ℓ)

)]

− γ
∑
m∈M1

∑
ij∈Em

∫ xijm(ℓ)

0

sijm(z)dz

− γ
∑
od

∑
m∈M0

φt̄odmℓodmr

− (θ − ν)
∑
od

ℓod(ℓ) ln (ℓod(ℓ))

− (ν − σ)
∑
odm

ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.

g(ℓ) :=
∑

odmr∈S

ℓodmr − L = 0

where ℓodm(ℓ), ℓodm(ℓ) and xijm(ℓ) are given by definitions (31), (32), and (33) above.

The distorted planner’s problem involves three changes relative to the full planner’s
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problem. Firstly, ūo − 1Iβo is replaced with ūo − βo. Secondly, Ād − 1Iαd is replaced with

Ād − αd. Finally, sijm(xijm) is replaced with 1
xijm

∫ xijm
0

sijm(z)dz. These correspond to each

of the distortions in the model: externalities in residential attractiveness, productivity and

congestion. Note in particular, that when 1I = 1 so that the endogeneity in productivities

and residential attractiveness is internalized by agents, the first two sets of terms coincide.

The key intuition for each of these terms in the presence of externalities is that, when making

decisions agents use average costs but the planner will use marginal costs.

I focus on the case of the congestion externality. When the planner considers the cost

of sending traffic along a particular link, ijm, the contribution to the objective function

is given by −γxijmsijm(xijm). The marginal cost (in terms of time) of increasing flow on

that link is therefore given by sijm(xijm) + xijms
′
ijm(xijm). Each of these terms has an

intuitive interpretation: sijm(xijm) is the utility cost paid in time for the marginal traveler.

s′ijm(xijm) is how much the marginal traveler increases journey times for all other people

using the link. There are xijm people using the link so the contribution from this term is

xijms
′
ijm(xijm). By contrast, in the competitive equilibrium problem, agents do not account

for the xijms
′
ijm(xijm) term: the marginal driver along a link only internalizes their private

time cost sijm(xijm) which also corresponds to the average cost along the link. The key

to establishing the competitive equilibrium as an optimization problem is to distort the

planner’s congestion technology so that they too neglect the spillovers from the marginal

driver to the travel times others. This is exactly what is achieved by taking the total

contribution to the objective function of traffic flows on a link to be
∫ xijm
0

sijm(z)dz. When

this function is differentiated it returns sijm(xijm) so that the pseudo-planner only accounts

for the direct cost of time travel to the marginal driver. The formal verification of this

intuition for congestion, as well as endogenous amenities and productivities, is given explicitly

in the proof of Proposition 2.

The problem has the following Lagrangean associated with it, constructed from the ob-

jective function and constraint together with a multiplier λ. This is given in the following

definition.

Definition 4 (Lagrangean of the Distorted Planner’s Problem and Turning points).

The Lagrangean of the Distorted Planner is a function of (ℓ, λ) where λ ∈ R, ℓ ∈ [0, L]S

defined by:

L(ℓ, λ) := f(ℓ)− λg(ℓ, λ)

A turning point of the Lagrangean of the Distorted Planner is a pair (ℓ, λ) satisfying:

∇f(ℓ)− λ∇g(ℓ) = 0
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g(ℓ) = 0

Formulating the Lagrangean is key in characterizing the competitive equilibria of the

city, as is established in the following proposition.l

Proposition 2 (Characterizing the Competitive Equilibrium). All variables in the equilib-

rium are determined by the value of ℓ. The set of ℓ’s that are turning points of the distorted

planner’s Lagrangean is equal to the set of ℓ’s that are competitive equilibria of the model.

Proof. See Appendix A

It is important to note that this result does not rely on the uniqueness of the equilibrium.

If agglomeration forces are strong enough, there will be multiple equilibria. Fujita et al.

(2001) show how this issue can be approached in models with a few locations by enumerating

the full set of equilibria using direct methods. Proposition 2 suggests an alternative: by

casting the equilibrium as an optimization problem, enumerating equilibria of the model is

reposed as the problem of enumerating the turning points of a Lagrangian. While not pursued

in the current paper, it is possible this approach could shed light on issues of multiplicity in

modern quantitative spatial models featuring many locations of the kind reviewed in Redding

and Rossi-Hansberg (2017).

Given that the equilibria of the model can be cast as an optimization problem with a

very similar structure to the planner’s problem, establishing existence and uniqueness of the

competitive equilibrium in the model will also proceed in a similar way, namely by showing

that the program is strictly concave. Under standard regularity conditions, the turning point

of the Lagrangean will give us the unique optimum of the program provided the objective

function is strictly concave. This leads to the following proposition:

Proposition 3 (Existence and Uniqueness for the Competitive Equilibrium Problem). Un-

der Assumption 1, a solution to the competitive equilibrium problem exists. It is unique

if

θ − ν > max
o,d∈O×D

{αd + βo, αd, βo}

Proof. See Appendix A

The intuition for this result is similar to the case of the planner’s problem: the agglomer-

ation forces in the model must be offset by significantly strong dispersion forces to maintain
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the overall concavity of the problem and resulting uniqueness of the equilibrium. It is impor-

tant to note that we only require s′ijm(x) > 0 as given in Assumption 1 for the equilibrium

case. This is a weaker requirement than that xsijm(x) be strictly convex. The reason for this

is that the replacement of xsijm(x) by
∫ xijm
0

sijm(z)dz acts as a further convexifying force on

the objective function. The planner’s problem requires that the total cost along a link be

convex in xijm whereas the pseudo-planner requires only that the marginal effect of traffic

flows on times be positive. The latter is enough to ensure that, in a competitive equilibrium,

multiplicity is avoided: when more people travel along a road, the costs to private individ-

uals increase. The planner must also account for spillovers: as flows on a road increase, the

marginal increases in costs to other drivers must also increase.

3.6 Decentralization

I now turn to how the optimal allocation can be decentralized as a competitive equilibrium

with taxes. I assume that there are three tax instruments available: a flat tax (or subsidy11)

on individuals at their workplace τFd , a flat tax at their residence τHo and a flat tax imposed

each time they cross a link on each congested mode τijm. I assume that the tax revenues from

these taxes are rebated lump-sum to individuals and included in their non-wage income b.

The three taxes are chosen to offset the three potential externalities in the model. Intuitively,

this should give us strong enough tools to correct each of them, a point that is formally shown

below. I first show the taxes change the equilibrium equations (1)-(15) to define the concept

of an equilibrium with taxes.

With this definition in hand I establish two corollaries to the main propositions of the pa-

per. Firstly, I show that given an arbitrary set of taxes
((
τFd
)
d∈D ,

(
τHo
)
o∈O , (τijm)m∈M1,ij∈Em

)
the model can be solved for the equilibrium with taxes in an analogue of Proposition 3. Sec-

ondly, I find expressions for the taxes that decentralize the planner’s solution.

Equations (9) and (10) are adjusted in a straightforward way to incorporate the taxes

Ad = Ād − τFd + αd ln ℓ
F
d ∀d ∈ D , (9#)

uo = ūo − τHo + βo ln ℓ
H
o ∀o ∈ O . (10#)

The total revenues from the taxes are rebated lump sum to consumers so that we have

11I represent subsidies as negative values of the τ variables. I refer to them as taxes throughout but they
should be understood to allow for negative values.
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b =

∑
d∈D ℓ

F
d (τ

F
d − 1Iαd) +

∑
o∈O ℓ

H
o (τ

H
o − 1Iβo) +

∑
m∈M1

∑
ij∈Em τijmxijm

L
(11#)

It is important for what follows that the rebated tax revenues are equal for all agents. In

particular, they must not depend upon any aspect of the choices over odmr. For example,

if the taxes were rebated locally, so that the revenue from each area’s taxes was given to the

agents who lived or worked there, this would distort locations. In turn this would lead to

complicated interactions with the congestion externality and the endogenous attractiveness

of workplaces and residences. The fact that lump-sum transfers that are constant across

agents do not affect location decisions can be seen mathematically in equation (4). Note

that the b term will cancel in all numerators and denominators of the expression: as in all

(additive) discrete choice models, shifting the value of each option by a constant does not

affect the choice probabilities.

Turning to the tax on links for congested modes we have

tijm =
∑
ij∈Em

sijm(xijm) + τij/γ ∀m ∈ M1, ;∀ij ∈ Em (14#)

τijm is divided by γ since the tax is paid in units of the consumption good rather than

time. The taxes are paid each time the link is crossed terms of the consumption good and

so are equivalent, in utility terms, to a time cost of τij/γ

The market clearing condition in (15) must also be adjusted to account for the presence

of taxes too, namely,

∑
odmr∈S

ℓodmr(wd + b) =
∑
d∈D

yd +
∑
d∈D

ℓFd (τ
F
d − 1Iαd) +

∑
o∈O

ℓHo (τ
H
o − 1Iβo) +

∑
m∈M1

∑
ij∈Em

τijmxijm

(15#)

Note that the taxes appear on both sides of equation (15†) through the b term on the

left hand side and that these will cancel. As in the case of the equilibrium the 1I adjusts the

condition for whether or not the endogenous components of residential attractiveness and

productivities are internalized by agents. I now define an equilibrium with taxes.

Definition 5 (Competitive Equilibrium with Taxes).

Given
((
τFd
)
d∈D ,

(
τHo
)
o∈O , (τijm)m∈M1,ij∈Em

)
a competitive equilibrium with taxes is set of

quantities ({ℓodmr}{ℓFd }, {ℓHo }, {yd}{xijm}), wages {wd}, travel times ({todmr}{tij}) and in-

clusive values ({vodmr}, {vodm}, {vod}) such that:
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1. Consumers optimize as in (1), (2), (3), and (4)

2. Competitive firms optimize given their production technology as in (7) and (8).

3. Wages, productivities, residential attractiveness, and non-wage incomes are determined

endogenously by (8), (9#), (10#), and (11#).

4. Traffic flows and travel times are given endogenously by (12), (13), and (14#).

5. Residential and workplace labor markets and final goods markets clear so that (5), (6)

and (15#) hold.

These conditions imply that all agents take the taxes as given and optimize conditional

on them. The total revenue from the taxes is rebated lump sum to all individuals in the

economy. The problem is otherwise the same as the competitive equilibrium problem.

Corollary 1 (Existence and Uniqueness of Competitive Equilibrium with Taxes). Given a

set of taxes
((
τFd
)
d∈D ,

(
τHo
)
o∈O , (τijm)m∈M1,ij∈Em

)
, and under Assumption 1, a solution to

the competitive equilibrium with taxes problem exists. It is unique if

θ − ν > max
o,d∈O×D

{αd + βo, αd, βo}

Proof. See Appendix A

Given the similarity of the problem with taxes to the competitive equilibrium, establish-

ing existence and uniqueness proceeds along similar lines. The problem is first cast as an

optimization problem which is isomorphic to the distorted planner’s problem for the equilib-

rium problem. Since the taxes are lump sum, they do not affect the concavity properties of

the program. This result is key in investigating second best policy counterfactuals. The set

of taxes available can be constrained arbitrarily and the model can be solved at any fixed

value of the taxes to evaluate the welfare consequences. For example, a toll zone which im-

poses a fixed tax on a subset of links can be modeled as setting τijm = τ̄ for all links entering

the zone and zero elsewhere. The optimal level of the toll can be investigated numerically

by solving the model for different values of τ̄ and comparing the resulting utility.

I now show that the tax instruments given above are sufficient to achieve the first best

allocation from the planner’s problem and to find the taxes that do so. This is established

in the following proposition.
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Corollary 2 (Optimal Taxes). Let
(
x∗ijm

)
m∈M1,ij∈Em

be the link level flows that solve the

planner’s problem. In an equilibrium with taxes, the taxes that reproduce the allocation and

welfare from the planner’s problem are:

τHo = −(1− 1I)βo ∀o ∈ O

τFd = −(1− 1I)αd ∀d ∈ D

τijm = γx∗ijms
′
ijm(x

∗
ijm) ∀m ∈ M1, ∀ij ∈ Em

Proof. See Appendix A

The proof of the proposition proceeds by comparing the conditions for optimality of the

planner’s problem with those for the pseudo-planner’s problem for a competitive equilibrium

with taxes. It is verified that the proposed taxes lead to the same allocation. The taxes

follow the intuitive Pigouvian logic of offsetting each externality where it occurs. Taxes by

residence and home location offset any externalities that occur there. Note in particular

that they are zero when 1I = 1 and endogenous residential attractiveness and productivities

are fully internalized by agents. Turning to the congestion taxes, these offset the time cost

to others of traveling on each road. As discussed above, the marginal traveler on link ijm

imposes a total cost of xijms
′
ijm(xijm) on other travelers using that link. τijm corrects for

this by aligning marginal private and social costs of using each link.

While the formulae for taxes are easy to state, evaluating them numerically requires the

full structure of the model. In particular, x∗ijm comes from the solution to the first best

planner’s problem and accounts for the full set of equilibrium interactions. This means that

solving for the optimal tax policy requires computing the solution to a full general equilibrium

social planner’s problem. Doing so will be a key part of the empirical application to evaluate

the potential gains from congestion pricing. Note also, the fact that τHo and τFd do not

depend on ℓHo and ℓFd is a consequence of the functional form assumptions that have been

made in the model. In particular the log-linear form of equations (9) and (10) ensures that

any externalities from residence and workplace location decisions are constant in the number

of people. More general functional forms would also lead τHo and τFd to be dependent on

population12.

12In principle, more general functional forms for residential and productive externalities could be accom-
modated. For example if Ad = fd(ℓ

F
d ) then the ℓFd

[
Ād − αd + αd ln ℓ

F
d

]
term in the distorted planner’s

problem would need to be replaced with
∫ ℓFd
0

fd(z)dz, analogous to the case of congestion. This makes suf-
ficient conditions for strict concavity of the distorted planner and planner’s programs more abstract, so I
have imposed functional forms throughout.
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3.7 Computation

I now turn to the computation of the first best, competitive equilibrium and taxed equilibrium

problems. Since the empirical case I will consider involves αd, βo < 0, M1 = {m1}, and
M0 = {m0} I design an algorithm specifically tailored to this case. If αd, βo are composed of

multiple forces, the condition that they are negative states that the balance of these forces

must be negative in both cases. It achieves computational efficiency by greatly reducing

the dimensionality of the problem. In order to address all three problems within the same

framework I make the following definitions:

ũo :=


ūo − 1Iβo for the first best problem

ūo − βo for the competitive equilibrium problem

ūo − βo − τHo for the taxed equilibrium problem

Ãd :=


Ād − 1Iαd for the first best problem

Ād − αd for the competitive equilibrium problem

Āo − βd − τFd for the taxed equilibrium problem

s̃ijm(x) :=


sijm(x) for the first best problem

1
x

∫ x
0
sijm(z)dz for the competitive equilibrium problem

1
x

∫ x
0
sijm(z)dz + τijm/γ for the taxed equilibrium problem

Proposition 4 (Computable Program). Suppose that αd < 0 for all d ∈ D and βo < 0

for all o ∈ O, M1 = {m1}, and M0 = {m0}. Suppose also that Assumption 1 holds. Let

ũo, Ãd, s̃ijm be given by the definitions above according to which problem we are solving. The

solution to the problem can be obtained by solving the following unconstrained minimization

problem in dual variables:

min
{µij},{λHo },{λFd }

−
∑
o∈O

βo exp

(
λHo − ũo − βo

βo

)
−
∑
d∈D

αd exp

(
λFd − Ãd − αd

αd

)
+
∑
ij∈Em1

s̃∗
−1

ijm1
(µij/γ)

[
µij/γ − s̃ijm1

(
s̃∗

−1

ijm1
(µij/γ)

)]

+ θL ln

∑
od

exp

(
λHo + λFd

θ

)exp(−φγt̄od
ν

)
+

(∑
r

exp

(
−
∑
ij

µijn
od
ijmr1,r

/σ

))σ
ν

 ν
θ


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where

s̃∗ijm1
(x) := s̃ijm1(x) + xs̃′ijm1

(x) ,

and the primal variables {xijm1}, {ℓHo }, {ℓFd }, {ℓodm0}, {ℓodm1}, {ℓod} can be recovered through

duality relationships as a function of the optimal {µij}, {λHo }, {λFd }.

Proof. See Appendix A

Formally, this result comes from convex duality. However, it also provides economic

intuition about the problem. The proof proceeds by defining slack variables that represent

the aggregates xijm1 , ℓ
H
o , ℓ

F
d . These are constrained to be equal to their definitions in terms

of ℓ and µij, λ
H
o , λ

F
d represent the multipliers on xijm1 , ℓ

H
o , ℓ

F
d respectively. As usual, these

have an interpretation as the value of relaxing each of the constraints marginally. Consider

the planner’s problem. The proposition shows that all the planner needs to know to pin

down a solution is the optimal marginal value of an extra worker in each workplace, λFd , an

extra resident in each home location, λHo , and an extra car flowing along each link in the

network, µij.

3.8 Solving Sub-models

I now consider the problem of fixing some of agents’ choices within the model. I consider the

case with taxes as this nests the case without taxes by setting all taxes equal to zero. Firstly,

I consider fixing {ℓod} so that people are no longer allowed to change their locations od but

are still able to adjust their mode choice m and their route choice r. This may be thought of

as corresponding to the medium term where people can switch how they commute to work

and the route they choose to drive but cannot move their residence or workplace.

Given a fixed origin and destination, the only choice agents face is to maximize their

utility over modes and routes. They take into account the shocks they receive εmr as well

as the time it takes to travel todmr. εmr now has a GEV distribution with parameters (ν, σ)

governing the scale over modes and routes. The problem facing a consumer travelling from

o to d is therefore:

max
m∈M,r∈Rodm

−γtodmr + εmr

Following the same logic as for the general model, the choice shares will satisfy:

vtrodm = σ ln
∑

r∈Rodm

exp (−γtodmr/σ) ∀od ∈ O ×D, ∀m ∈ M (34)
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ℓodmr
ℓod

=
exp (vtrodm/ν)∑

m′∈M exp (vtrodm′/ν)

exp (−γtodmr/σ)∑
r′∈Rodm

exp (−γtodmr′/σ)
∀odmr ∈ S (35)

Note that the transportation choices made by individuals still give rise to endogenous

travel times through the definitions in (12), (13) and (14†). Equation (14†) also allows for the

incorporation of taxes in the form of {τijm} which may be equal to zero but will allow us to

assess the effects of congestion policies through different sub-models. We can now formulate

the following definition for an equilibrium over the transport part of the model.

Definition 6 (Transport Equilibrium with Taxes).

Given a set of origin-destination flows {ℓod} and a set of taxes over links {τijm}, a transport

equilibrium with taxes is a set of quantities ({ℓodmr}, {xijm}), travel times ({todmr}, {tij}) and
inclusive values {vtrodm} such that

1. Consumers optimize over routes and modes as in (23) and (24)

2. Traffic flows and travel times are given endogenously by (12), (13), (14†)

In the transport equilibrium {ℓod} pins down workplace and residential aggregates through

equations (5), (6), (7), (8), (9†), (10†), (11†) and of the model. It also determines the total out-

put of the city. We can therefore evaluate welfare in these models and the incorporation of

taxes is entirely analogous to the full general equilibrium case. In general, individuals would

want to change locations or modes in these models if they could: they do not maximize the

full utility function from the general model. However, if the {ℓod} are themselves the equilib-

rium values that result from the larger competitive equilibrium model then the solutions to

the transport equilibrium will coincide with the {ℓodmr} flows that are consistent with them.

This can be seen directly by appropriately summing and rearranging equations (1)-(4) and

comparing the results with equations (16) and (17). The details of these results as well as the

computational algorithm used to solve these problems are presented in Appendix B. They

follow a similar logic to the general case.

It is possible to constrain agents choices even further. Fixing both the location and mode

choices is equivalent to fixing {ℓodm} for each od ∈ O × D and each m ∈ M. This fixes

the mass of agents along taking all modes between all origin and destination pairs. Agents

with m ∈ M0) now face no choice: their is no route choice in their problem and their

origin, destination and mode have been specified. However, agents with m ∈ M1 still face a

choice over the route they take to commute. This can be thought of as the very short term:

drivers can alter their travel route daily, but permanently changing travel mode generally

takes longer, for example requiring buying or selling a car. Drivers now account for the

shocks they receive only over routes εr which are now simply Gumbel distributed with scale
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parameter σ as well as travel times. A consumer traveling from o to d by mode m ∈ M1

solves

max
r∈Rodm

−γtodmr + εr

In this case, the choice shares are simply given by the usual logit formula:

ℓodmr
ℓodm

=
exp(−γtodmr/σ)∑
r′ exp(−γtodmr′/σ)

∀odmr ∈ S (36)

Note that this equation holds trivially for m ∈ M0 but that for m ∈ M1 it provides an

optimality condition and the todmr terms on the right hand must agree with the endogenous

flows of drivers on the left. This leads us to the following definition of a driving equilibrium:

Definition 7 (Driving Equilibrium with Taxes).

Given a set of origin-destination-mode flows {ℓodm} and a set of taxes over links {τijm}, a
driving equilibrium is a set of quantities ({ℓodmr}, {xijm}) and travel times ({todmr}, {tij})
such that

1. Consumers optimize over routes as in (25)

2. Traffic flows and travel times are given endogenously by (12), (13), (14†)

Again, the aggregate production and residential attractiveness of locations in the model

will be pinned down by {ℓodm}, allowing us to evaluate welfare in the driving equilibrium.

Individuals may wish to re-optimize either over modes or locations or both. However, if

{ℓodm} are generated from a transport equilibrium then the sub-choice of routes from a

driving equilibrium taking these flows as given will generate the same {ℓodmr} flows. Similarly

{ℓodm} generated from the full competitive equilibrium problem will also have {ℓodmr} flows

which coincide with those from the driving sub-problem. With the two problems defined, I

provide a final existence and uniqueness result.

Proposition 5 (Existence and Uniqueness for Transport and Driving Equilibria with Taxes).

Under assumption 1, there exists a unique solution for the the transport equilibrium with taxes

and there exists a unique solution for the driving equilibrium with taxes.

Proof. See Appendix A

The proof closely parallels that of propositions (2) and (3) but is simplified considerably

by the absence of location choices and the possibility for agglomeration forces through αd, βo.

In these models, the conditions for uniqueness are mild: there are only congestion forces so
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there is no scope for multiplicity provided that assumption 1 holds and increased traffic leads

to increasing journey times. These propositions are closely related to results in the transport

literature as reviewed in Sheffi (1985). I state them here for clarity. I also use the results for

different purposes to what has been done in that literature. Firstly, in counterfactuals, I will

use both the transport and driving equilibrium to assess how welfare changes in response

to policy before the margins of mode and route choice have adjusted. Secondly, solving

the transport equilibrium problem will be a key step in the identification of the model’s

parameters.

4 An Application to New York City Congestion Pric-

ing

This section shows how the model is estimated in an application to New York City. I

begin by describing the sources of data I use and the the parameters that I take from the

literature. Estimation of the set of parameters proceeds in two steps. Firstly, I estimate the

congestion technology from time of day variation in the flow of cars on roads. Secondly, I use

these congestion estimates together with the structure of the model to identify residential

attractiveness and productivities in each location using commuting data and a maximum

likelihood estimation strategy.

In what follows I make the following simplifications to the more general framework out-

lined above.

M1 = {m1} (37)

M0 = {m0} (38)

1I = 1 (39)

Equation (16) states that there is a single congested mode, which will represent driving

with equation (17) representing the single uncongested mode: public transit. (18) implies

that we will consider a model without externalities in home and work locations, focusing on

the case where they are given by floor-space supply elasticities and internalized by agents.

This allows me to isolate the effects of the key externality of the paper: traffic congestion.

It also allows the results from Proposition 4 to be directly applied.
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4.1 Data Sources

Taking the model to data requires mapping the discrete locations in the model to areas

in and around New York City. Within the city itself, I take 263 taxi zones used by New

York’s Taxi and Limousine Company to describe neighborhoods. I aggregate these into 100

approximately equally sized areas which provide a level of spatial granularity that I can solve

computationally. Outside of New York City I include all sub-counties within a 20km radius

of the edge of the city. These capture areas in New York State and New Jersey in which a

large number of commuters into New York City live. As these vary considerably in size, I

again aggregate them to a total of 20 approximately equal zones. The resulting 120 locations

are illustrated in panel (a) of Figure 1. The area accounts for the home locations of 89%

of the workforce in New York City. Further details on the construction of these zones is

provided in Appendix C.

To represent the roads in the area as a network, I use Open Street Maps data (OSM).

This provides the individual roads and junctions over the study area together with a range

of road characteristics such as the direction, number of lanes, length and road and junction

type. I extract a directed network from this data by placing a link from a source zone to a

target if any of the OSM roads go in that direction between the two zones. The resulting

network is displayed in panel (b) of Figure 1. Road and junction characteristics will also be

used to estimate the congestion technology below.

(a) Zones (b) Road Network

Figure 1: New York City Zones and Road Network

To estimate the relationship between travel times by car and traffic flows I make use

of two data sources. For travel speeds I use Google Maps API to provide the speeds at
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different hours of the day along different links in the network. I take the minimum speed

observed at any hour of the day to be the free-flow speed along that link. For traffic flows I

use the New York Department of Transportation’s automated traffic volume counts between

2017 and 2019. These provide a measure of the flow of vehicles on over 2,000 road segments

within New York City by hour of the day and across different dates in the year. I aggregate

these to find the average volume per lane kilometer by hour of the day for each link in the

network, which I match to the travel time data. Journey times by public transit are also

obtained from Google Maps API. I query each origin-destination pair to find the fixed travel

time between locations allowing for the use of all public transport options (including subway,

buses and rail) as well as walking. These queries are made to achieve a 9am arrival time on

Monday morning, corresponding to a typical morning rush-hour commute.

Finally, I make use of two commonly used data sources. For commuting I use the Longitu-

dinal Employer-Household Dynamics, Origin-Destination Employment Statistics (LODES)

from 2019. This provides commuting flows between home and work census tracts which I

aggregate to the zones defined above. I also use the American Community Survey (ACS)

data for 2019 to provide information on wages, hours worked per day, and transportation

modes used when commuting. Further details on all aspects of the data construction process

are provided in Appendix C.

4.2 Fixed and Calibrated Parameters

Translating time savings into dollars requires taking a stance on the value of time (VoT)

for individuals: γ in the model. To obtain this quantity I use recent estimates of the value

of time from Almagro et al. (2024). They provide estimates that vary across the income

distribution for Chicago in 2010. In order to make these estimates applicable to New York

City in 2019 and find a single value of time, I use their estimated parameters together with

the mean income per capita for New York13. I deflate this to 2010 dollars to compute the

implied value of time in 2010 dollars and then reinflate it to find its value in 201914. I find a

value of time of $25.92. I also draw on Almagro et al. (2024) to find the mode shock scale:

ν. Using their estimates for peak-hour travel and converting into units of dollars using the

value of time estimate I find a value of ν = 8.869.

To obtain values for αd, βo I make use of the floor-space supply micro-foundations pre-

13Estimates from the transportation economics literature consistently find the value of time traveling to
be substantially below the wage rate. Those reviewed in Small and Verhoef (2007) find it to be around half
the wage. The estimates I use are close to this for New York.

14In the notation of Almagro et al. (2024) The value of time is given by αT y
1−αpy/αp where y is income

and αT , αpy, αp are estimated parameters. This is the relationship I use, plugging in the mean value of y for
New York City.
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sented in Appendix B, together with floor-space supply elasticity estimates that vary over

space taken from Baum-Snow and Han (2024). The equations from the micro-foundations

imply expressions for the parameters of the model as follows

βo =
−δH

1 +
(

ψo
1−ψo

)
αd =

−δF

1 +
(

ψd
1−ψd

)

Where δH is a preference parameter determining household expenditure on floor-space,

δF is a production parameter of firms determining their use of floor-space in production,

and ψo
1−ψo is the floor-space supply elasticity which I take from Baum-Snow and Han (2024)

in each location. I calibrate δH to match the average expenditure share on housing from

the BLS for New York City and New Jersey which is 0.391. For firms, I match the average

expenditure share on floor-space to 0.2. These then recover αd and βo as given parameters.

The final set of parameters that I calibrate and fix are φ and σ. I calibrate φ so that the

aggregate share of people who use public transport in the equilibrium of the transport model

matches the data. I find a value of φ = 1.047 implying a higher utility cost of time spend on

public transit relative to driving. This parameter ensures the model matches aggregate mode

shares and therefore captures many effects that exist in reality but that are abstracted from in

the model. For example, the user cost of owning and maintaining a car versus the monetary

cost of using public transit are not directly modeled. Equally, the difficulty of parking in

New York or the fact that driving may be more or less pleasant than riding the subway

are not explicitly modeled. To the extent that these parameters affect the attractiveness of

taking public transit relative to driving they will be reflected in, and partially captured by,

φ. If these costs are proportional to time spent traveling φ is the correct way to model them.

φ therefore provides a reduced form way to capture many omitted factors15. Finally, I fix

σ = 0.648 which is small in magnitude relative to the other elasticities in the model. This

leads to routing choices that approximate the case where travelers take the shortest time

path through the network given the equilibrium traffic flows.

15With disaggregated data on mode shares by origin and destination, it would be possible to be even
more flexible, fitting a separate φod parameter for each pair. Calculating costs directly is an even more data
intensive alternative and has been developed in great detail recently by Almagro et al. (2024).
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4.3 Congestion Technology Estimation

To estimate the congestion technology I make use of a commonly used functional form within

the transport literature developed by the Bureau of Public Roads (BPR)16. On a particular

link level ij, it relates the time taken at an hour of the day h, tijh, to the flow on the link at

that time xijh through the following formula:

tijh = t0ij

[
1 + aijx

bij
ijh

]
where t0ij represents the free-flow travel time across the link which I obtain directly as the

minimum observed travel time across hours of the day from Google Maps API. The free-flow

speed is scaled by an increasing function of the flow of traffic on the link so that journey times

increase as flows increase. aij and bij are parameters governing the slope and curvature of the

relationship and depend on features of the road network. The function is convex whenever

bij > 1 and for large values of bij journey times can rise rapidly corresponding to bottlenecks

in the network. Note that I only observe traffic flows, xijh, on a subset of links in the network

where the Department of Transport has sensors measuring the counts. In particular, I do

not observe any flow measures outside of New York City. To make progress on this issue, I

assume that the parameters are a function of link level observable variables, zij so that

aij = exp (g0(zij)) ,

bij = exp (g1(zij)) .

I use over 90 covariates including the number of intersections in each zone, the total

length of roads, the latitude and longitude, and the types of roads and junctions in each

zone. A full list is provided in Appendix C. Applying these to the BPR formula with an

error term, ηij, included gives

tijh = t0ij[1 + eg0(zij)ηijhx
g1(zij)
ijh ] . (40)

Rearranging this by noting that t0ij is observable yields the estimating equation

ln

(
tijh
t0ij

− 1

)
= g0(zij) + g1(zij) lnxijh + ηijh . (41)

This equation is of a form analyzed by Athey et al. (2019) and I use machine learning

techniques, in particular generalized random forests to deal both with the high dimensional

16See Sheffi (1985) for a discussion of this and other parametric congestion functions.
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set of covariates to avoid over-fitting and to obtain a more precise prediction of the relation-

ship between travel speeds and traffic flows. I take point estimates for g0(zij) and g1(zij) for

all links in the network by extrapolating the fitted functions from links in which I observe

traffic flows to those in which I do not. I do not consider inference for these quantities which

is challenging in such settings.

(a) Link in Lower Manhattan (b) Goodness of Fit

Figure 2: Fit on a Single Link

Figure 2 shows the goodness of fit of the relationship between traffic flows and travel

times on the particular link in lower Manhattan highlighted in panel (a). Panel (b) shows

the raw data as 24 points, one for each hour of the day for which the aggregated flows and

speeds are observed. In panel (b), the red curve shows the estimates from the BPR formula

using generalized random forests and the blue curve shows a non-parametric kernel fit using

only the data on the link itself. The BPR formula captures the relationship well and as is

further illustrated in Figure 3 which shows the predicted versus actual travel times for all

links and times at which both flows and speeds are observed. The correlation coefficient

between the two is 0.97.

The estimated values of g0(zij) and g1(zij) provide a mapping between the average flow

per lane and travel times. The output of the model is not directly comparable to flows per

lanes. In order to address this issue I scale the model implied flows xij to match the mean

flow per lane on observed links at the morning rush hour time of 8-9:00am. This parameter

is calibrated jointly with φ at a fixed value of σ by repeatedly solving the transportation

sub-problem as defined in proposition 5. This calibration procedures means that I am able

to match both the aggregate share of people using public transit (versus driving) as well as
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the mean flow per lane in the data.

Figure 3: Overall Goodness of Fit for Congestion

There are at least two potential concerns with the estimation strategy developed above.

Firstly, if ηij is interpreted as measurement error in xijh then the estimates for g0() and

g1(.) will generally be biased. There are reasons to suspect that measurement error may

be a concern: only a subset of the roads within a zone are observed, and while the sample

appears representative there may be issues with both selection and missing data. To gain

some intuition on this issue, consider the case of classical measurement error in lnxijh and

where equation (20) is estimated on a single link using OLS where g0, g1 are parameters and

no longer a function of observables. In this case, g1 will be biased towards zero leading to

less curvature in the estimated congestion relationship than in reality. A second potential

concern is that ηij represents shocks to the congestion technology at different hours of the

day which are correlated with the demand for traffic on the road lnxijh and observed by

individuals leading to simultaneity bias. Considering again the case where equation (20) is

estimated by OLS on a single link, it is reasonable to expect this correlation to be negative if

drivers observe the congestion technology. As an example, suppose that it is slower to drive

at night. It is reasonable to expect people to adjust to this by taking fewer trips during

night-time hours than they otherwise would. Again, this would lead the estimated g1 to be

biased downwards.

The case where ϵijh represents a shock to travel times that is uncorrelated with ln xijh

leads to consistent estimates in (20). As argued above, the likely sign of bias in estimation
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is downwards. This intuition is supported by the IV strategies employed in Almagro et al.

(2024) and Akbar and Duranton (2017) who both find higher elasticities of congestion when

using IV compared to OLS.

4.4 Commuting: Maximum Likelihood Estimation

In this section I show how {Ad}d∈D, {uo}o∈O and θ can be recovered from the LODES com-

muting data using the structure of the model and the parameters σ, ν, φ, γ and {sijm1(.)}ij∈Em1

obtained in the previous sections.

In the notation of the model, the number of people commuting between o and d is given

by ℓod :=
∑

m∈M
∑

r∈Rodm
ℓodmr. Equations (1)-(4) and (12) imply that

ℓod
L

=
exp ((uo + Ad + κod)/θ)∑

o′d′∈O×D ((u′o + A′
d + κo′d′)/θ)

∀od ∈ O ×D (42)

κod := ν ln

exp(ϕγ
ν
t̄od

)
+ exp

σ
ν
ln

∑
r∈Rodm1

exp (−γtodm1r)

 (43)

Equation (42) gives the usual logit formula for choice probabilities over locations given

deterministic utilities uo + Ad + κod. The bilateral cost term κod in (43) accounts for the

nesting over routes and modes using the usual log-sum-exp formulas. In particular, it gives

the expected total utility inclusive of all preference heterogeneity over agents, of traveling

between o and d. Importantly each term in this expression, apart from uo, Ad, is known

or can be computed from the data. ν, σ, φ, γ have already been fixed and t̄od is data.∑
r∈Rodm1

exp (−γtodm1r) can be computed provided we know the equilibrium link level speeds

tijm1 using an expansion in terms of powers of a weighted adjacency matrix over the network.

This is formally described in Appendix B. I now turn to how uo, Ad, and θ can be recovered

from the data by using Proposition 5.

The LODES data provides a measure of commuting flows between origins and destina-

tions which I denote ℓ̃od. I interpret as a finite, i.i.d., sample of size N =
∑

od∈O×D ℓ̃od from

the measures {ℓod}od∈O×D of people commuting in the continuum model which has a fixed

total mass L. In an asymptotic regime in which N → ∞ while L remains fixed, the weak

law of large numbers then implies that ℓ̃od
N

p→ ℓod
L
.

Given Proposition 5, fixing the values of ℓod at the observed levels from the LODES data

ℓ̃od, I solve the transport sub-model given the parameters σ, ν, φ, γ, {sijm1(.)}ij∈Em1
. This

provides me with an estimate of the traffic flows on each driving link, xijm1 , together with

the required travel times along particular driving links tijm1 . As all functions in the model are
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smooth, the continuous mapping theorem suggests that these estimates should be consistent

as N grows large given the asymptotic regime outlined in the previous paragraph. I do not

provide a formal proof of this. Equipped with a measure of tijm1 , equations (42) and (43)

can be estimated from the data using maximum likelihood and replacing uo/θ and Ad/θ with

fixed effects. In practice, this can be implemented by a Poisson regression, once we have

computed κod as is standard in the urban-spatial literature. The coefficient on κod will give

us 1/θ. The fixed effects, Ad and uo, are then identified up to an additive constant as is

the case in general in discrete choice models: the level of deterministic utility of all options

can be shifted up or down by any constant without changing the choice probabilities. The

resulting estimate is θ = 21.603 and so the parameters in the model satisfy the requirement

that θ > ν > σ as required for GEV.

In order to pin down the levels of Ad and uo from the estimated fixed effects I make use

of outside data from the ACS. I set the level of wages wd = Ad so that the mean daily wages

for the study area in the model match those observed for the same area in the ACS data.

In particular I add a constant to across locations to uo and Ad to ensure that
∑

d∈D Adℓ
F
d /L

matches the values observed in the data.

(a) Commuting Fit in Levels (b) Commuting Fit in Logs

Figure 4: Goodness of Fit for Commuting

Figure 4 shows the fit of the commuting model. Panel (a) shows the fit in levels and the

correlation between fitted and actual commuting flows is 0.926. Panel (b) shows the fit in

logs for ease of visualization given the large range of the data, dropping zeros. It is worth

noting that at the level of aggregation considered in this paper, 96.9% of origin-destination

pairs have non-zero flows.

39



5 Counterfactuals

With the model’s parameters set, I now turn to counterfactuals. First, I assess the impact

of taxes that decentralize the first best as given in Corollary 2. I compute the net welfare

impact relative to the equilibrium as well as decomposing the gains along the margins of

route, mode and location choice adjustment. Next, I turn to second best policies. I examine

the congestion zone proposed in Manhattan and find the optimal toll level implied by the

fitted model as well as the welfare gain it achieves. Finally, I examine a second best policy

which imposes a flat tax on a larger set of links in the network and evaluate the potential

welfare gains.

5.1 The First Best

Taxing each link within the whole road network requires extensive policy instruments which

are not a practical policy to implement at present. However, it is of interest for two reasons.

Firstly, it is a natural benchmark for congestion pricing: by fully offsetting the externalities

generated by driver behavior it provides an upper bound on what can be achieved by policy.

Secondly, the instruments available to policy-makers are becoming increasingly sophisticated.

For example, Singapore already implements toll gates that vary their fees based on both

location and time of day with a new system in development that will incorporate distance

based pricing. GPS route planning software and the advent of driver-less cars also have the

potential to minimize total driving time across a group of travelers rather than providing the

individually rational route for each user. As these technologies develop, first best routing

may become more feasible.

In New York City and the surrounding area of the study, I find that the first best taxes

generate gains17 of $0.77 per person per workday. This corresponds to 1.8 minutes saved per

person per day. The aggregate weekly gains from the policy total $21.7 million per week.

These figures suggest substantial gains to be made by improving the use of existing road

infrastructure within the largest U.S. city.

Figure 5 above illustrates the first best taxes from the model. Panel (a) shows the total

tax paid entering each zone in the study area under the equilibrium with optimal taxes.

Taxes are high in lower Manhattan where there is a large volume of traffic and the resulting

externalities are substantial. These are the areas that were designed to be targeted by

the proposed congestion zone. It is also interesting to note that optimal taxes are high

in parts of New Jersey. These areas have a high proportion of commuters that drive to

work. These areas are also relatively well connected by public transit, with the Google Maps

17All values are given in 2019 dollars unless explicitly noted.
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(a) First Best Taxes into Locations (b) % Fall in Traffic into Locations

Figure 5: First Best Congestion Pricing

API showing relatively low travel times into central Manhattan. Turning to Panel (b), this

shows the percentage fall in traffic volume into each zone in the first best relative to the

equilibrium. As expected, these somewhat mirror the patterns seen in the taxes. Traffic falls

in Manhattan as well as parts of Brooklyn and New Jersey. The figure also illustrates a high

tax between Staten Island Brooklyn which are connected only by the Verrazzano-Narrows

Bridge. This bottleneck induces increased congestion externalities that are offset by the

optimal policy. First best congestion pricing leads to a 7 percentage point increase in the

use of public transit throughout the study area. This large change in public transit provides

a first indication of the central role played by mode choice in the model.

(a) % Change in Workplace Population (b) % Change in Residential Population

Figure 6: Location Changes in the First Best Relative to the Competitive Equilibrium

Next, I consider the spatial implications of the set of first best taxes in terms of changes to
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employment and residential locations which are illustrated in Figure 6. Workplace population

concentrates in highly productive Manhattan locations despite the fact that there are large

congestion externalities from traffic flow in these areas. This is partially explained by the

large increase in public transit commuting which result from first best taxation which allows

workers to commute to Manhattan without inducing a congestion externality. The largest

falls in residential location occur in New Jersey where large amounts of driving commuting

flows enter Manhattan. Increases in residential locations population are more dispersed.

I now turn to assessing the role of route, mode, and location choice in mediating the

effects of the first best policy. To do so I make use of the results from Section 3.8 on the

Transport Equilibrium and Driving Equilibrium. First, I consider fixing both the location

and mode choice of individuals while imposing the first best tax policy on all links. This

can be thought of as reflecting the short-term response to the policy as well as isolating the

role of driver route choice. There are frictions that prevent adjustment along location and

mode margins. Moving homes is costly, as is finding a new place of work. Permanently

changing transport mode requires buying (or possibly selling) a car. However, for those

already driving, changing the route they commute to work is relatively easy. When I only

allow drivers to change their route through the network I find that %12 of the full gains

are realized. Next, consider the case where only locations are fixed and adjustment through

both route and mode is allowed. This corresponds to a time horizon where people have still

not moved home or work but have switched mode and driving route. Here, the gains are

much larger: 90% of the full gains are realized. The final 10% of the gains are only realized

when we allow individuals to move home and workplace. Overall, this suggests the first order

importance of substitution across modes in mediating the gains from congestion pricing with

route and location choice playing a smaller, but non-negligible role. It is important to note

that these results depend heavily on the transit infrastructure of the city: New York has

the highest rate of public transit commuters of any city in the US and a highly developed

system of subways, buses, and light rail to serve them. In areas where public transit is less

developed, it is likely that route and location choices would play a more prominent role.

5.2 Second Best Tolls

I now turn to the congestion toll proposed for lower Manhattan and postponed indefinitely

on June 5 2024. The toll was set to charge a fee for entering lower Manhattan with a variety

of exemptions and variations in implementation for different types of vehicles such as trucks,

taxis and ride-for-hire vehicles. For simplicity, I model the zone as a single flat fee paid each

time a link that enters the prescribed area is crossed. These links are highlighted in Figure

42



Figure 7: Lower Manhattan Congestion Zone

7 and cover all major bridges and tunnels into lower Manhattan as well as access from other

parts of Manhattan. I will represent the toll by setting τijm1 = τ̄ for each of these links and

a fixed value of τ̄ ∈ R.

(a) Optimum Calculation (b) % Fall in Traffic Into Locations

Figure 8: Finding the Optimal Toll Zone Level

The model can be solved for different values of τ̄ and the welfare levels computed. This

provides a means to find the optimal level of the toll by maximizing a univariate function.

To do this, I first plot a grid of values of τ̄ to assess the global properties of welfare as a

function of the tax. The results are shown in Panel (a) of Figure 8. Given that the function
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appears unimodal, I then proceed by bisection search to find the optimal level of the toll.

This is shown in the cluster of points around the optimal value. The value of the optimal

toll is computed to be $13.37. When inflated to 2024 dollars this gives a value of $16.38
which is of similar magnitude to the proposed toll of $15 in 2024. The toll achieves 35% of

the gain from the first best allocation over the competitive equilibrium. This suggests that

even the relatively simple proposed policy generates non-trivial time-savings to commuters.

However, given the first best benchmark, it also suggests that there is substantial scope for

improvement with more targeted policies.

The spatial implications from the optimal lower Manhattan toll zone are substantially

different to those from first best taxation. Panel (b) in Figure 8 shows the percentage change

in traffic into locations relative to the competitive equilibrium allocation. It is important to

note that even though the policy only affects flows through taxes on 7 of the 553 links in

the network, there are substantial changes in the amount of traffic into locations throughout

the study area. This highlights the importance of the full equilibrium interactions of the

model: with location, mode and route choice all jointly determined, changes to the cost of a

small subset of the links have spillovers to the entire network. The largest falls in traffic are

concentrated in Manhattan and Brooklyn, with some also in New Jersey. These represent

areas either in the congestion zone, or that are key locations on routes that connect to it.

(a) % Change in Workplace Population (b) % Change in Residential Population

Figure 9: Location Changes from Manhattan Toll Relative to the Competitive Equilibrium

Turning to the effects on employment and residential locations, the effects of the con-

gestion zone follow a definite pattern. Employment is moved out of Manhattan and into

the surrounding areas in Brooklyn as commuting into Manhattan becomes more costly and

nearby areas experience a spillover of increased employment. Residential changes are twofold.

Firstly, they concentrate in Manhattan to avoid paying the toll zone by shortening work com-
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mutes. Secondly they concentrate on the periphery of the study area.

(a) Optimum Calculation (b) 25 Most Congested Links

Figure 10: Tolls on 25 Most Congested Links

As a final exercise to illustrate the potential of the framework to assess second best

policies I examine a case where the policymaker is allowed to tax a larger subset of the links.

I take the 25 most congested links as measured by the direct externality xijs
′
ij(xij) at the

equilibrium flows {xij}. Similarly to the Manhattan toll zone I restrict the policymaker to

imposing a flat tax on this set of links. All links that are included in the Manhattan toll zone

are also included in the 25 links selected, providing suggestive evidence that these links were

well targeted for a flat tax. The optimal toll level is at $8.74 which is again computed by a

grid search combined with bisection. The welfare gain from this policy achieves 50% of the

first best welfare gains, illustrating the potential for greater gains from more sophisticated

congestion pricing strategies.

6 Conclusion

In this paper, I develop a general equilibrium urban model with location, transport mode

and route choice to study the welfare effects of congestion pricing. Travel times and the

attractiveness of locations as home or workplaces are determined endogenously as a result

of agents’ decisions. I study the competitive equilibrium for the economy with or without

taxes as well as a utilitarian planner’s problem whose solution can be fully decentralized and
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provide conditions for the existence and uniqueness of solutions to these problems within a

unified framework. I also develop an algorithm to solve the model numerically.

I apply the framework to study the welfare effects of congestion pricing in New York,

fitting model parameters using the rich data available there. I find large gains from optimal

congestion pricing, with the first best taxes yielding gains from time saved equivalent to $21.7
million dollars per week. These gains are mediated through individuals’ choices of location,

mode and route in the model. The results suggest that in New York, where there is a highly

developed system of public transit, substitution across modes is of first order importance for

welfare with location decisions and drivers’ re-routing behavior playing a more modest but

non-negligible role.

The model suggests that toll zones of the kind proposed in Manhattan have the potential

to substantially increase welfare over the status quo. Over a third of the gains from optimal

pricing can be achieved by a toll zone covering only lower Manhattan. However, this policy

leaves much scope for improvement. The space of potential second best policy instruments is

large and it would be of practical policy relevance to find alternative policies that do better.

A number of extensions to the model would be interesting to consider from both a practi-

cal and theoretical perspective. Firstly, incorporating different types of agents, with different

income levels and values of time, would allow the study of distributional implications of con-

gestion pricing which may interact in novel ways with the sorting of individuals across space

through their home and workplace choices. Secondly, while the model has focused on com-

muting, non-commuting trips account for a large share of journeys made within New York

and their importance has recently been highlighted by Miyauchi et al. (2021). How these

trips interact with endogenous congestion may yield further insights into the impacts and

potential benefits from congestion pricing. Thirdly, the model is fully static. The substitu-

tion of trips over different hours of the day, as studied by Kreindler (2024), provides a further

margin through which congestion pricing affects welfare. How this interacts with location,

mode and route choice in full general equilibrium has yet to be fully studied.

Finally, the work has relevance beyond the case of traffic congestion. Models with dis-

tortions that occur through a network structure are pervasive in economics. For example,

congestion and agglomeration externalities operating through connections in space are cen-

tral to much of the urban and spatial economics literature. Equally, models of supply chain

networks often feature externalities between different producers. Casting the equilibria of

these economies as the solution to an optimization problem offers a different point of view to

study them, one which may generate novel insights. The tools developed in this paper could

therefore have scope to be applied more broadly and, I believe, offer a promising avenue for

future research.

46



References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1988). Network flows.

Akamatsu, T. (1996). Cyclic flows, markov process and stochastic traffic assignment. Trans-

portation Research Part B: Methodological, 30(5):369–386.

Akamatsu, T. (1997). Decomposition of path choice entropy in general transport networks.

Transportation Science, 31(4):349–362.

Akbar, P. and Duranton, G. (2017). Measuring the cost of congestion in highly congested

city: Bogotá.
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Appendices

A Proofs

Throughout the proofs I freely use basic facts about concave functions. For background

material on convex optimization see Boyd and Vandenberghe (2004).

Lemma 1.
The proof proceeds in two steps. Firstly, I show that the planner is indifferent between

different allocations of the consumption good, c, and I note how this simplifies the problem.

Secondly, I fix ℓodmr and use the results from Galichon and Salanié (2022) to show how this

simplifies the problem to the desired form by solving out for the function a(.). Thirdly, I

show that the problem can be expressed purely as a function of ℓ := (ℓodmr)odmr∈S ∈ RS .

First note that independently of the choice of the assignment a(.), given the constraints

of the model we will have that:

L

∫
RS
c̃(ε̄)fε(ε̄)dε̄ = c

=
∑
d∈D

(Ād + αd ln ℓ
F
d )ℓ

F
d + 1I

[
−
∑
d∈D

ℓFd αd −
∑
o∈O

ℓHo βo

]

This shows that the impact on the objective of the allocation of c is independent of a()

provided that the constraints are satisfied. This holds because the planner is utilitarian with

utility linear in consumption: they care only about productive efficiency, not how utility is

divided.

Secondly, consider fixing {ℓodmr} at a particular set of values. Note that, the constraints of
the model pin down all other variables apart from the assignment function a(.). In particular

uo = uo({ℓodmr}) and todmr = todmr({ℓodmr}). The objective function for the planner, ignoring

the fixed L
∫
RS c̃(ε̄)fε(ε̄)dε̄ term which is unaffected by a(.) becomes:

max
a∈A

L

∫
RS

(
uõ(ε̄) − γtõ(ε̄)d̃(ε̄)m̃(ε̄)r̃(ε̄) + ε̄õ(ε̄)d̃(ε̄)m̃(ε̄)r̃(ε̄)

)
fε(ε̄)dε̄

s.t.∫
RS
1

{(
õ(ε̄), m̃(ε̄), d̃(ε̄), r̃(ε̄)

)
= (o, d,m, r)

}
fε(ε̄)dε̄ = ℓodmr/L ∀odmr ∈ S

Where uo and todmr are understood to be functions of the fixed value of ℓodmr. This is
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an optimal transport problem. For this proof only, redefine vodmr := uo + −γtodmr, again
understood as a function of ℓodmr and collect the full vector in v.

The value of the problem above is equivalent to maximizing vodmr + εodmr point-wise for

each realization of ε. That is, it is equivalent to

L

∫
RS

(
max
odmr

{vodmr + ε̄odmr}
)
f(ε̄)dē

Following Galichon and Salanié (2022) define

G(v) =

∫
RS

(
max
odmr

{vodmr + ε̄odmr}
)
f(ε̄)dε̄

By well known results in discrete choice for GEV distributions we know that, up to an

additive constant18:

G(v) = θ ln
∑
od

exp

([
ν
∑
m

exp

((
σ ln

∑
r

exp(vodmr/σ)

)
/ν

)]
/θ

)
Again following Galichon and Salanié (2022) define the Legendre-Fenchel transform of G

for q ∈ RS

G∗(q) =

supṽ

∑
odmr ṽodmrqodmr −G(ṽ) if

∑
odmr qodmr ≤ 1

+∞ otherwise

Following the duality arguments in section 3 and Appendix B.119 of Galichon and Salanié

(2022) we know that for any vector q ∈ RS
+ such that

∑
odmr qodmr = 1:

−G∗(q) = θ ln
∑
od

exp

([
ν
∑
m

exp

((
σ ln

∑
r

exp(ṽodmr(q)/σ)

)
/ν

)]
/θ

)
−
∑
odmr

qodmrṽodmr(q)

Where ṽodmr(q) solves the system of equations:

qodmr =
∂

∂ṽodmr
θ ln

∑
od

exp

([
ν
∑
m

exp

((
σ ln

∑
r

exp(ṽodmr/σ)

)
/ν

)]
/θ

)

This characterizes G∗(q) as an implicit function of q I now solve for this function in

18Throughout I neglect constant terms involving the Euler-Mascheroni constant as they do not affect any
of the optimization problems or changes across counterfactuals

19Note that there is a sign error in equation B.3 of their Appendix B
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closed form. I make the following definitions:

qodm =
∑
r

qodmr

qod =
∑
m

qodm

ṽodm = σ ln
∑
r

exp(ṽodmr/σ)

ṽod = ν ln
∑
m

exp(ṽodm/ν)

v̄ = θ ln
∑
od

exp(vod/θ)

Now, taking the derivative above we have the usual nested logit probability formula:

qodmr =
exp(ṽod/θ)∑
o′d′ exp(ṽo′d′/θ)

exp(ṽodm/ν)∑
m′ exp(ṽodm′/ν)

exp(ṽodmr/σ)∑
r′ exp(ṽodmr′/σ)

From this, after some algebra, we obtain:

ṽod = θ ln qod + v̄

ṽodm = ν ln qodm + (θ − ν) ln qod + v̄

ṽodmr = σ ln qodmr + (ν − σ) ln qodm + (θ − ν) ln qod + v̄

Plugging these expressions back into the expression for −G∗(q) and simplifying, the terms

involving v̄ cancel and we obtain an expression purely in terms of q:

−G∗(q) = −(θ − ν)
∑
od

qod ln qod − (ν − σ)
∑
odm

qodm ln qodm − σ
∑
odmr

qodmr ln qodmr

At the optimum, equations (3.2) and (3.5) from Galichon and Salanié (2022) imply that:

G(v) =
∑
odmr

vodmrpodmr −G∗(p)

Where podmr := ℓodmr/L is the share implied by the fixed value of ℓodmr. Together with

the closed form expression for G∗(p), this shows that we have reduced the problem of finding

an assignment function a(.) by solving the inner optimization problem first. Plugging the
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definitions back in and simplifying gives20:

LG(v({ℓodmr})) =
∑
d

ℓHo uo − γ
∑
odmr

todmrℓodmr

− (θ − ν)
∑
od

ℓod ln ℓod − (ν − σ)
∑
odm

ℓodm ln ℓodm − σ
∑
odmr

ℓodmr ln ℓodmr

Combining this with the expression for L
∫
RS c̃(ε̄)fε(ε̄)dε̄ derived above and substituting

in the constraints for uo, Ad gives the following formulation of the planner’s problem:

max
{ℓodmr},{ℓFd }, {ℓ

H
o },

{xijm}, {tijm}, {todmr}

∑
o∈O

ℓHo [ūo − 1Iβo + βo ln ℓ
H
o ] +

∑
d∈D

ℓFd [Ād − 1Iαd + αd ln ℓ
F
d ]

− γ
∑

odmr∈S

ℓodmrtodmr

− θ
∑

od∈O×D

ℓod ln ℓod − ν

[∑
m∈M

∑
od∈O×D

ℓodm ln ℓodm −
∑
od

ℓod ln ℓod

]

− σ

[ ∑
od∈O×D

∑
m∈M

∑
r∈Rodm

ℓodmr ln ℓodm1r −
∑

od∈O×D

∑
m∈M

ℓodm ln ℓodm

]

s.t.

∑
odr∈S

ℓodmr = L∑
m∈M

∑
dr∈D×Rodm

ℓodmr = ℓHo ∀o ∈ O∑
m∈M

∑
or∈O×Rodm

ℓodmr = ℓFd ∀d ∈ D∑
m∈M

∑
r∈Rodm

ℓodmr = ℓod ∀od ∈ O ×D∑
m∈M

∑
r∈Rodm

ℓodmr = ℓodm

todmr =


∑

ij∈Em n
odm
ij,r tijm if m ∈ M1

φt̄odm if m ∈ M0

∀odmr ∈ S

20Again neglecting additive constants.
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xijm =
∑

od∈O×D

∑
rRodm

nodmij,r ℓodmr ∀m ∈ M1,∀ij ∈ Em

tijm = sijm(xijm) ∀m ∈ M1,∀ij ∈ Em

I now turn to the third step of the proof: showing that this program can be expressed

only as a function of ℓ ∈ RS .

First note that by the constraints:

∑
od

∑
m∈M1

∑
r

todmrℓodmr =
∑
od

∑
m∈M1

∑
r

(∑
ij∈Em

nodmij,r tijm

)
ℓodmr

=
∑
m∈M1

∑
ij∈Em

(∑
o

d
∑
r

nodmij,r ℓodmr

)
tijm

=
∑
m∈M1

∑
ij∈Em

xijmsijm(xijm)

This result simply states that the total time spent traveling through the network can

be computed either by summing flows multiplied by times along routes or along links. The

latter is a more useful representation.

For uncongested routes we simply have:

∑
od

∑
m∈M0

∑
r

todmrℓodmr =
∑
od

∑
m∈M0

ℓodmφt̄odm

With these results in hand we are able to restate the problem as an optimization problem

over only ℓ with a single constraint21. Using definitions (16)-(22) from the main text and

substituting in to the program above gives the problem in the desired form.

Proposition 1.

21I define x lnx := limx→0 x lnx = 0 so that the function is defined over the entire domain. Note however
that a corner will never be the optimum as the marginal benefit from any x lnx term approaches infinity as
x approaches 0. This in turn implies that the other corner at L will never be optimal.
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Existence The feasible set is compact since [0, L]S is the product of closed and bounded

intervals and therefore compact. The intersection of this with a linear constraint is also

compact. All functions in the objective function are continuous. By Weierstrass’ theorem

(see for example, Rudin (1976) p.89-90) the objective function attains a maximum.

Uniqueness Uniqueness proceeds by considering each of the pieces of the objective function

in turn and arguing that they are concave or strictly concave in ℓ so that the resulting function

is strictly concave over a convex set and any solution is unique. The convexity of the feasible

set follows immediately from the linearity of the constraint and the fact that the bounds on ℓ

are the product of closed and bounded intervals. Recall again that concave transformations

of a concave function are concave.

First consider the term −γ
∑

m∈M1

∑
ij∈Em xijm(ℓ)sijm(xijm(ℓ)). Since xijmsijm(xijm) is

everywhere convex by assumption, we have the sum of convex functions which is convex.

The negative sign makes it concave and the linear aggregation of ℓ preserves concavity so

this term is concave in ℓ

Now turn to −γ
∑

od

∑
m∈M0

φt̄odmℓodmr which is linear and therefore concave.

Next consider the term −(ν − σ)
∑

odm ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑

odmr ℓodmr ln ℓodmr. First

splitting this term up in terms of M1,M0 and noting that for m ∈ M0 there is no route

choice so that ℓodmr = ℓodm we find that the term simplifies to:

−(ν − σ)
∑
od

∑
m∈M1

ℓodm(ℓ) ln ℓodm(ℓ)− ν
∑
od

∑
m∈Mo

ℓodmr ln ℓodmr − σ
∑
m∈M1

∑
r

ℓodmr ln ℓodmr

Consider the first term in this expression. −(ν − σ)ℓodm ln ℓodm is concave in ℓodm for all

m ∈ M1 and all od. The first term is therefore concave. I now show that the second term is

strictly concave in the full vector ℓ. I show this by a second derivative test considering the

Hessian of the function. Firstly note that all cross partial terms of the Hessian are zero: it

is a diagonal matrix. It suffices to show that the diagonal entries are strictly negative. For

m ∈ M1 the second derivative with respect to ℓodmr is given by −σ
ℓodmr

< 0 for ℓodmr > 0. For

m ∈ M0 the second derivative with respect to ℓodmr is given by −ν
ℓodmr

< 0 for ℓodmr > 0.

The function is therefore strictly concave on the interior of the domain and we have already

noted that the optimum cannot be at a corner since the marginal benefit of increasing ℓodmr

approaches infinity as ℓodmr approaches zero.
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The final terms to consider are:

∑
o

(∑
d

ℓod

)[
ūo − 1Iβo + βo ln

(∑
d

ℓod

)]
+
∑
d

(∑
o

ℓod

)[
Ād − 1Iαd + αd ln

(∑
o

ℓod

)]
− (θ − ν)

∑
od

ℓod ln (ℓod)

Note that the terms involving ūo,1Iβ0, Ād,1Iαd are linear in ℓod and so concave and may

be ignored. it suffices to show that the following function is concave:

∑
o

βo

(∑
d

ℓod

)
ln

(∑
d

ℓod

)
+
∑
d

αd

(∑
o

ℓod

)
ln

(∑
o

ℓod

)
− (θ − ν)

∑
od

ℓod ln (ℓod)

Now note that if αd ≤ 0 or βo ≤ 0 any of the terms involving those values will be concave,

since, for example βo (
∑

d ℓod) ln (
∑

d ℓod) is concave in {ℓod} whenever βo ≤ 0. Such terms

may be ignored from the function since they are already concave. Keeping only terms where

αd > 0 and βo > 0 by using indicator functions, the function that we have to show is concave

is:

f({ℓod}) :=
∑
o

1{βo>0}βo

(∑
d

ℓod

)
ln

(∑
d

ℓod

)
+
∑
d

1{αd>0}αd

(∑
o

ℓod

)
ln

(∑
o

ℓod

)
− (θ − ν)

∑
od

ℓod ln (ℓod)

Again I proceed with a second derivative test based on the Hessian. First evaluate the

partial derivatives that make up the gradient vector:

∂f

∂ℓod
({ℓõd̃}) = 1{βo>0}βo+1{βo>0}βo ln

(∑
d

ℓod

)
+1{αd>0}αd+1{αd>0}αd ln

(∑
o

ℓod

)
−(θ−ν) (1 + ln ℓod)

Now turn to the Hessian:
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∂2f

∂ℓod∂ℓo′d′
({ℓõd̃}) =



1{βo>0}βo∑
d̃ ℓod̃

+
1{αd>0}αd∑

õ ℓõd
− θ−ν

ℓod
if o = o′, d = d′

1{βo>0}βo∑
d̃ ℓod̃

if o = o′, d ̸= d′

1{αd>0}αd∑
õ ℓõd

if o ̸= o′, d = d′

0 if o ̸= o′, d ̸= d′

Note that the Hessian is an |O||D| × |O||D| matrix with rows and columns each index

by an od pair22. I will show that this is negative definite which entails that the function

is strictly concave in {ℓod}. Fix the Hessian at a particular value of {ℓõd̃}. Note that since

(θ − ν) > maxo,d{αd, βo, αd + βd} and that ℓod ≤ min{
∑

õ ℓõd,
∑

d̃ ℓod̃} we have that

∂2f

∂ℓ2od
({ℓõd̃}) < 0

By Theorem 4.C.2 (in particular the remark following it) in Takayama (1985) this means

that if the Hessian is diagonally dominant, then the matrix is negative definite as required.

Using the structure of the Hessian, the condition for diagonal dominance from the definition

on page 381 of Takayama (1985) requires that there exist positive numbers {aod} such that

for any od:

aod

∣∣∣∣ ∂2f∂ℓ2od
({ℓõd̃})

∣∣∣∣ >∑
d′ ̸=d

aod′

∣∣∣∣ ∂2f

∂ℓod∂ℓod′
({ℓõd̃})

∣∣∣∣+∑
o′ ̸=o

ao′d

∣∣∣∣ ∂2f

∂ℓod∂ℓo′d
({ℓõd̃})

∣∣∣∣
Where I have made use of the fact that many of the terms in the Hessian are zero and

so are dropped from the summations on the right hand side. Taking aod := ℓod and applying

the computed values for the Hessian we find that the expression above evaluates to:

θ − ν > βo1{βo>0} + αd1{αd>0}

Now note that the assumption from the proposition was that θ−ν > max{βo, αd, βo+αd}.
This ensures that the above inequality holds and so the hessian of f is negative definite. This

shows that f(ℓod) is strictly concave in {ℓod} and therefore concave when viewed as a function

of {ℓodmr}. This completes the final piece of the objective function.

I have shown that the full objective function is globally strictly concave on the interior of

a convex domain and that the optimum cannot occur on the boundary of [0, L]S . Conclude

that any solution to the optimization problem is interior and unique.

22We may take an arbitrary ordering as long as it is the same for rows and columns.
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Proposition 2.
The proof proceeds in three steps. First, I show that the competitive equilibrium can be

reduced to a set of equations defining choice shares as a fixed point in the variable ℓ. Second,

I show that any ℓ satisfying the equilibrium equations allows the construction of a λ such

that (ℓ, λ) is a turning point of the distorted planner’s Lagrangean. Third, I show that

any (ℓ, λ) that is a turning point of the distorted planner’s Lagrangean will have an ℓ that

satisfies the equilibrium equations.

Equilibrium as a fixed point in ℓ

First note that all the variables in the model can be represented as a function of ℓ.

Equations (16)-(22) in the main text can be augmented by making the following recursive

definitions:

uo(ℓ) := ūo + βo ln
(
ℓHo (ℓ)

)
∀o ∈ O

Ad(ℓ) := Ād + αd ln
(
ℓFd (ℓ)

)
∀d ∈ D

b(ℓ) := 1I

[
−
∑

d∈D ℓ
F
d (ℓ)αd −

∑
o∈O ℓ

H
o (ℓ)βo

L

]
vodmr(ℓ) := b(ℓ) + uo(ℓ) + Ad(ℓ)− γtodmr(ℓ) ∀odmr ∈ S

vodm(ℓ) := σ ln
∑
r

exp(vodmr(ℓ)/σ) ∀odm ∈ O ×D ×M

vod(ℓ) := ν ln
∑
m

exp(vodm(ℓ)/ν) ∀od ∈ O ×D

This means that we can state equation (4) from the set of equilibrium equations as a

fixed point problem in the vector ℓ:

ℓodmr
L

=
exp(vod(ℓ)/θ)∑
o′d′ exp(vo′d′(ℓ)/θ)

exp(vodm(ℓ)/ν)∑
m′ exp(vodm′(ℓ)/ν)

exp(vodmr(ℓ)/σ)∑
r′ exp(vodmr′(ℓ)/σ)

(†)

If (†) holds then equations (1)-(14) are pinned down as functions of ℓ through the defini-

tions given above. Equation (15) will hold by Walras’ law. Noting that since b(ℓ) is constant

over odmr it does not affect the choice probabilities as it drops out from all numerators and

denominators. we may therefore redefine:

ṽodmr(ℓ) := uo(ℓ) + Ad(ℓ)− γtodmr(ℓ) ∀odmr ∈ S
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ṽodm(ℓ) := σ ln
∑
r

exp(ṽodmr(ℓ)/σ) ∀odm ∈ O ×D ×M

ṽod(ℓ) := ν ln
∑
m

exp(ṽodm(ℓ)/ν) ∀od ∈ O ×D

It will also be useful to define:

v̄(ℓ) := θ ln
∑
od

exp(ṽod(ℓ)/θ)

Which gives the expected utility in the model.

Given b does not affect choices over locations, modes or routes, we can instead consider

the fixed point problem:

ℓodmr
L

=
exp(ṽod(ℓ)/θ)∑
o′d′ exp(ṽo′d′(ℓ)/θ)

exp(ṽodm(ℓ)/ν)∑
m′ exp(ṽodm′(ℓ)/ν)

exp(ṽodmr(ℓ)/σ)∑
r′ exp(ṽodmr′(ℓ)/σ)

(*)

Noting that the solutions to (∗) and (†) coincide. We have now shown that the competitive

equilibrium problem reduces to the problem of finding a fixed point to a set of equations in

ℓ only.

If ℓ is a turning point of the Lagrangean for the Distorted Planner then it is

a solution to (∗)

In what follows I drop the explicit dependence on ℓ , but all variables are to be understood

as functions of ℓ. The turning points of the Lagrangean are characterized by the first order

conditions:

ṽodmr − (θ − ν) ln ℓod − (ν − σ) ln ℓodm − σ ln ℓodmr = λ+ θ∑
odmr

ℓodmr = L

Let (ℓ, λ) satisfy these equations. Manipulating the equations and using the definitions

of variables in terms of ℓ above, we obtain the following expressions:

ℓodm = exp

(
−
(
θ − ν

ν

)
ln ℓod −

(
λ+ θ

ν

)
+
ṽodm
ν

)
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ℓod = exp

(
−
(
λ+ θ

θ

)
+
ṽod
θ

)
λ = v̄ − θ − θ lnL

We will now plug these expressions into the first order condition to obtain an expression

for ℓodmr and verify that it agrees with (∗).

ℓodmr = exp

(
ṽodmr
σ

−
(
θ − ν

σ

)
ln ℓod −

(
ν − σ

σ

)
ln ℓodm −

(
λ+ θ

σ

))
= exp

(
ṽodmr
σ

−
(
λ+ θ

θ

)
+

(
ν − θ

νθ

)
ṽod +

(
σ − ν

σν

)
ṽodm

)
= exp

(
ṽodmr

σ
− v̄

θ
+ lnL+

(
ν − θ

νθ

)
ṽod +

(
σ − ν

σν

)
ṽodm

)
=

exp
(
ṽodmr
σ

)
exp

((
ν−θ
νθ

)
ṽod
)
exp

((
σ−ν
σν

)
ṽodm

)
exp

(
v̄
θ

) L

=
exp(ṽod/θ)∑
o′d′ exp(ṽo′d′/θ)

exp(ṽodm/ν)∑
m′ exp(ṽodm′

exp(ṽodmr/σ)∑
r′ exp(ṽodmr′/σ)

L

Which is equivalent to (∗) as desired.

If ℓ is a solution to (∗) then it defines a turning point of the Lagrangean for

the Distorted Planner

Suppose ℓ satisfies (∗). Summing (∗) over odmr we obtain
∑

ℓodmr
= L immediately. It

therefore remains to show that there exists a value of λ such that the first condition for a

turning point of the Lagrangean is satisfied for all ℓodmr.

Taking logs of (∗) and using the definitions we obtain:

ln ℓodmr − lnL =

(
ν − θ

νθ

)
ṽod +

(
σ − ν

σν

)
ṽodm +

ṽodmr
σ

− v̄

θ

Now note that by taking the appropriate summations (∗) also implies that:

ṽod = θ ln
ℓod
L

+ v̄

ṽodm = ν ln
ℓodm
L

+ (θ − ν) ln
ℓod
L

+ v̄
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Applying these to the formula above and simplifying yields:

ṽodmr − (θ − ν) ln ℓod − (ν − σ) ln ℓodm − σ ln ℓodmr = v̄ − θ lnL

Taking λ := v̄− θ lnL− θ ensures that the first order conditions for a turning point hold

for all odmr as required.

Proposition 3.
Existence Note that by the same argument as in proposition 1, an optimum to the distorted

planner exists. By Theorem 1.D.6 in Takayama (1985) this optimum will also be a turning

point23 of the distorted planner’s Lagrangean since gradient of g(ℓ) is a vector of ones so

the constraint qualification holds. By proposition 2, turning points of the Lagrangean are

equilibria. Conclude that an equilibrium exists.

Uniqueness Given proposition 2, the problem is isomorphic to the simplified problem in

proposition 1 where ūo−1Iβo is replaced with ūo−βo, Ād−1Iαd with Ād−αd and sijm(xijm)
with 1

xijm

∫ xijm
0

sijm(z)dz. To show the problem is strictly concave under the stated assump-

tions, the only condition which remains to be verified is that the following function is globally

convex:

xijm

(
1

xijm

∫ xijm

0

sijm(x)dx

)
Taking its second derivative with respect to xijm shows that this holds whenever s′ijm(x) >

0 for any x, which is the assumption. Note that unlike the case of the planner’s problem,

all variables in the equilibrium (including consumption) are pinned down as a function of ℓ

through the definitions above and equations (16)-(22) in the main text. Conclude that the

equilibrium is unique.

23Note that Takayama uses the term quasi-saddlepoint (QSP), see the definitions in chapter 1.D
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Corollary 1.
The equilibria of a competitive equilibrium with taxes are characterized as the turning

points of the Lagrangean for the following program:

max
ℓ∈[0,L]S

∑
o

(∑
d

ℓod(ℓ)

)[
ūo − τHo − βo + βo ln

(∑
d

ℓod(ℓ)

)]

+
∑
d

(∑
o

ℓod(ℓ)

)[
Ād − τFd − αd + αd ln

(∑
o

ℓod(ℓ)

)]

− γ
∑
m∈M1

(∑
ij∈Em

∫ xijm(ℓ)

0

sijm(z)dz +
xijm(ℓ)τijm

γ

)
− γ

∑
od

∑
m∈M0

φt̄odmℓodmr

− (θ − ν)
∑
od

ℓod(ℓ) ln (ℓod(ℓ))

− (ν − σ)
∑
odm

ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.

∑
odmr∈S

ℓodmr − L = 0

Where ℓodm(ℓ), ℓodm(ℓ) and xijm(ℓ) are given by definitions (18), (19) and (20). The

proof parallels that in proposition 2 exactly. The only changes are the replacement of ūo

with ūo−τHo , Ād with Ād−τFd and
∫ xijm(ℓ)

0
sijm(z)dz with

∫ xijm(ℓ)

0
sijm(z)dz+

xijm(ℓ)τijm
γ

. Note

that none of these changes alter the concavity properties of the optimization problem. By

the arguments in propositions 1 and 3 conclude that an equilibrium exists under assumption

1 and is unique provided that θ − ν > maxod∈O×D{αd + βo, αd, βo}.

Corollary 2.
The proof proceeds by considering the turning points of the Lagrangean for the planner’s

problem and the problem with taxes. By proposition 1 and corollary 1 we know that both of
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these uniquely identify an ℓ. It therefore remains to show that the two systems of equations

are equivalent under the stated taxes so that the solutions for ℓ coincide. Note that the

derivative with respect to λ is the same in both cases, simply restating the constraint that

ℓodmr − L = 0. I turn to the first order conditions with respect to ℓodmr in each case.

In the case of the planner’s problem we have:

ūo + (1− 1I)βo + βo ln ℓ
H∗

o + Ād + (1− 1I)αd + αd ln ℓ
F ∗

d

− 1{m∈M1}γ
∑
ij

sijm(x
∗
ijm) + x∗ijms

′
ijm(x

∗
ijm)− 1{m∈Mo}γϕt̄odm

− (θ − ν)(1 + ln ℓ∗od)− (ν − σ)(1 + ℓ∗odm)− σ(1 + ℓ∗odmr)− λ∗ = 0

In the case of the program for the equilibrium with taxes defined in corollary 1 evaluated

at the taxes from the statement of corollary 2 above we have:

ūo + (1− 1I)βo + βo ln ℓ
H
o + Ād + (1− 1I)αd + αd ln ℓ

F
d

− 1{m∈M1}γ
∑
ij

(
sijm(xijm) + x∗ijms

′
ijm(x

∗
ijm)

)
− 1{m∈Mo}γϕt̄odm

− (θ − ν)(1 + ln ℓod)− (ν − σ)(1 + ℓodm)− σ(1 + ℓodmr)− λ = 0

Note that the first system of equations has a unique solution when combined the con-

straint by proposition 1. Now note that since ∗ variables solve the first system of equations,

ℓHo = ℓH
∗

o , ℓFd = ℓF
∗

d , ℓod = ℓ∗od, ℓodm = ℓ∗odm, ℓodmr = ℓ∗odmr, xijm = x∗ijm and λ = λ∗ must

also solve the second system. By corollary 1, this is the unique solution. Conclude that the

proposed taxes decentralize the first best solution to ℓ.

Proposition 4.
The proof proceeds in three steps. Firstly, each optimization problem is cast as the saddle

point to a Lagrangean problem in slack variables. Secondly, by using duality, we consider

the dual of the optimization problem. Finally, considering the inner optimization problem

over primal variables, first order conditions are used to simplify the program and obtain a
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problem stated purely in terms of multipliers which is simplified further by taking first order

conditions over those.

Using the notation for ũo, Ãd, and s̃ijm from the text the mathematical program defining

the solution to the planner, competitive equilibrium, and equilibrium with taxes problems

can be expressed in a unified framework. Under the assumptions of the proposition we have:

max
ℓ∈[0,L]S

∑
o

(∑
d

ℓod(ℓ)

)[
ũo − 1Iβo + βo ln

(∑
d

ℓod(ℓ)

)]

+
∑
d

(∑
o

ℓod(ℓ)

)[
Ãd − 1Iαd + αd ln

(∑
o

ℓod(ℓ)

)]
− γ

∑
ij∈Em

xijm1(ℓ)s̃ijm1(xijm1(ℓ))

− γφt̄odm0ℓodm0r

− (θ − ν)
∑
od

ℓod(ℓ) ln (ℓod(ℓ))

− (ν − σ)
∑
odm

ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.

∑
odmr∈S

ℓodmr = L

This problem has been shown to be strictly concave. I now introduce slack variables for

ℓHo , ℓ
F
d , ℓodm and xijm and corresponding multipliers so that they satisfy the constraints

defined by the functions in equations (16)-(22) of the main text. With a slight abuse of

notation I let ℓ denote all of {ℓodmr}, {ℓHo }, {ℓFd } , {ℓodm} stacked as a single vector. I let

x denote the stacked traffic flows and λ,µ denote the stacked vectors of multipliers. This

leads to the following Lagrangean formulation of the problem24:

max
ℓ,x

min
λ,µ

∑
o

ℓHd
[
ũo + βo ln ℓ

H
o

]
+
∑
d

ℓFd

[
Ãd + αd ln ℓ

F
d

]
−
∑
ij

xijm1 s̃ijm1(xijm1)− φ
∑
od

ℓodm0r t̄odmo

− (θ − ν)
∑
od

ℓod ln ℓod − (ν − σ)
∑
odm

ℓodm ln ℓodm − σ
∑
odmr

ℓodmr ln ℓodmr

24Note that since existence has been established, sup, inf are replaced with max,min
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−
∑
o

λHo

[
ℓHo −

∑
dmr

ℓodmr

]
−
∑
d

λFd

[
ℓFd −

∑
omr

ℓodmr

]
−
∑
od

λModm1

[
ℓodmr −

∑
r

ℓodm1r

]

λCod

[
ℓod −

∑
mr

ℓodmr

]
−
∑
ij

µij

[∑
odr

ℓodm1rn
od
ijm1r

− xijm

]
− λ

[
L−

∑
odmr

ℓodmr

]

Note that since all constraints are linear, the Lagrange multipliers are not constrained in

sign. Not also that with αd, βo < 0 the function is concave in its arguments. x, ℓ need only

be positive but, as argued above, the solution will always be interior so that non-negativity

constraints are omitted. This completes the first step in the proof.

Now note that since the constraints are linear and satisfy the constraint qualification,

strong duality holds25, and we may instead solve the problem

min
λ,µ

max
ℓ,x

∑
o

ℓHd
[
ũo + βo ln ℓ

H
o

]
+
∑
d

ℓFd

[
Ãd + αd ln ℓ

F
d

]
−
∑
ij

xijm1 s̃ijm1(xijm1)− φ
∑
od

ℓodm0r t̄odmo

− (θ − ν)
∑
od

ℓod ln ℓod − (ν − σ)
∑
odm

ℓodm ln ℓodm − σ
∑
odmr

ℓodmr ln ℓodmr

−
∑
o

λHo

[
ℓHo −

∑
dmr

ℓodmr

]
−
∑
d

λFd

[
ℓFd −

∑
omr

ℓodmr

]
−
∑
od

λModm1

[
ℓodmr −

∑
r

ℓodm1r

]

λCod

[
ℓod −

∑
mr

ℓodmr

]
−
∑
ij

µij

[∑
odr

ℓodm1rn
od
ijm1r

− xijm

]
− λ

[
L−

∑
odmr

ℓodmr

]

Where the order of max and min have been interchanged: the dual problem. This

completes the second step of the proof.

Now consider the inner problem of optimizing over ℓ,x for fixed values of λ,µ. This

problem is concave so that first order conditions will be sufficient for an optimum. It will be

useful to define the following:

s̃∗ijm(x) := s̃ijm(x) + xs̃′ijm(x)

We will take first order conditions with respect to x, ℓ.

The first order conditions give:

ln ℓHo =
λHo − ũo − βo

βo

ln ℓFd =
λFd − Ãd − αd

αd

25See the results in section 5.3.2 of Boyd and Vandenberghe (2004)
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xijm = s̃∗
−1

ijm(−µij/γ)

ln ℓod =
−λCod
θ − ν

− 1

ln ℓodmor =
−φγt̄odmo + λHo + λFd + λcod + λ

ν

ln ℓodm1 =
−λModm1

ν − σ
− 1

ln ℓodm1r =
λHo + λFd + λModm1

+ λCod + λ−
∑

ij µijn
od
ijm1r

/γ

σ
− 1

Note that if we can solve for the multipliers, these equations recover all primal variables

as a function of them, which is final part of the statement of the proposition. Using these

first order conditions, algebraic manipulations lead to the following program which involves

only Lagrange multipliers.

min
λ,µ

−
∑
o

βo exp

(
λHo − ũo − βo

βo

)
−
∑
d

αd exp

(
λFd − Ãd − αd

αd

)
+
∑
ij∈Em1

s̃∗
−1

ijm1
(µij/γ)

[
µij/γ − s̃ijm1

(
s̃∗

−1

ijm1
(µij/γ)

)]
+ (θ − ν)

∑
od

exp

(
−λCod
θ − ν

− 1

)
+ ν

∑
od

exp

(
−φγt̄odmo + λHo + λFd + λcod + λ

ν

)

+ σ
∑
od

exp

(
λHo + λFd + λModm1

+ λCod + λ

σ
− 1

)∑
r

exp

(
−
∑

ij µijn
od
ijm1r

/γ

σ

)

Note that by duality, this problem will be convex. First order conditions are therefore

sufficient for an optimum. We will now simplify this program even further by removing all

multipliers except for µij, λ
H
o and λFd by taking first order conditions with respect to the

other variables. Doing so, and after some further algebraic manipulations, we get:

min
λ,µ

−
∑
o∈O

βo exp

(
λHo − ũo − βo

βo

)
−
∑
d∈D

αd exp

(
λFd − Ãd − αd

αd

)
+
∑
ij∈Em1

s̃∗
−1

ijm1
(µij/γ)

[
µij/γ − s̃ijm1

(
s̃∗

−1

ijm1
(µij/γ)

)]

+ θL ln

∑
od

exp

(
λHo + λFd

θ

)exp(−φγt̄od
ν

)
+

(∑
r

exp

(
−
∑
ij

µijn
od
ijm1,r

/σ

))σ
ν

 ν
θ


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Which is the program from the statement of the proposition.

Proposition 5.
The strategy for both proofs parallels that of the general equilibrium case. The equilibrium

equations of the models are cast as fixed points whose solution is shown to coincide with the

solution to an optimization problem.

Transport Equilibrium with Taxes

Let the fixed origin destination flows be given by {ℓ̄od} and the link level taxes by {τijm}..
The equilibrium for the transport model with taxes can be cast as the following fixed point

problem in ℓ:

ℓodmr
ℓ̄od

=
exp (vtrodm(ℓ)/ν)∑

m′∈M exp (vtrodm′(ℓ)/ν)

exp ((−γtodmr(ℓ)) /σ)∑
r′∈Rodm

exp ((−γtodmr′(ℓ)) /σ)
(44)

Where todmr(ℓ) is given as in equations (20), (14†), (22) and

vtrodm(ℓ) := σ ln
∑

r∈Rodm

exp ((−γtodmr(ℓ)) /σ)

The optimization problem corresponding to this problem is:

max
ℓ

− γ
∑
ijm

∫ xijm(ℓ)

0

sijm(z)dz −
∑
ijm

τijmxijm(ℓ)− (ν − σ)
∑
odm

ℓodm(ℓ) ln (ℓodm(ℓ))− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.∑
mr

ℓodmr = ℓ̄od ∀od ∈ O ×D

Verifying that the turning points of the Lagrangean coincide with the equilibria defined

by (44) proceeds analagously to the general case. Moreover it is clear the objective function

is strictly concave given the arguments made above. Conclude that there exists a unique

transport equilibrium with taxes.

Diving Equilibrium with Taxes
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Let the fixed origin-destination-mode flows be given by {ℓ̄odm} and the link level taxes

be given by {τijm}. The equilibrium for this model can be case as a fixed point problem in ℓ

ℓodmr
ℓ̄odm

=
exp (−γtodmr(ℓ)/σ)∑

r′∈Rodm
exp (−γtodmr′(ℓ)/σ)

(45)

Where again todmr(ℓ) is given as in equations (12), (13), and (14#).

The optimization problem corresponding to this problem is:

max
ℓ

− γ
∑
ijm

∫ xijm(ℓ)

0

sijm(z)dz −
∑
ijm

τijmxijm(ℓ)− σ
∑
odmr

ℓodmr ln ℓodmr

s.t.∑
r

ℓodmr = ℓ̄odm ∀od ∈ O ×D, ∀m ∈ M

That the turning points of the Lagrangean coincide with the equilibria defined by (45)

again proceeds as in the general case. Moreover the objective function is strictly concave.

Conclude that there exists a unique driving equilibrium with taxes.

B Model Extensions and Micro-foundations

B.1 The Limit as K → ∞

Recall that we constrained the set of routes to have a length no longer than K in the main

text. I now show formally the implications of the limit as K → ∞. In equation (4) the term

which causes an issue is

∑
r

exp(vodmr/σ) .

In order for the model to be well-behaved, and converge to a definite limit as K → ∞,

we must ensure that this series does not diverge. If this term diverges, expected utilities will

become unbounded and the model is not well-defined in the limit. I proceed by providing

conditions that guarantee that this term is bounded, for any K.

First note that using the definitions from the main text we have
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∑
r

exp(vodmr/σ) = exp

(
b+ uo + wd

σ

)∑
r

exp

(
−γ
σ

∑
ij

nodijmrtijm

)

≤ exp

(
b+ uo + wd

σ

)∑
r

exp

(
−γ
σ

∑
ij

nodijmrsijm(0)

)

The first equality applies definitions from the main text and the inequality follows from

Assumption 1: tijm ≥ sijm(0) since s′ijm > 0 at any level of traffic. Intuitively, this states

that the journey time along a link in equilibrium is at least as large as the free-flow speed

with no traffic. It remains to bound the final term. First note that exp
(
b+uo+wd

σ

)
is bounded

since the population is of finite mass L. This follows from equations (8), (9), (10), and (11).

So we must bound
∑

r exp
(
− γ
σ

∑
ij n

od
ijmrsijm(0)

)
. This involves a sum over routes r ∈ Rodm

which may be of arbitrary length. It will be helpful to define the following |N |× |N | matrix

for each m ∈ M1

[Wm]ij =

exp
(
− γ
σ
sijm(0)

)
if ij ∈ Em

0 otherwise

This is a weighted adjacency matrix for the graph Em over the set of all possible locations

N . The weights are given as a function of the free-flow speeds across links. Recall that the

ijth entry of the kth power of the weighted adjacency matrix, W k
m, gives the sum of the

products of weights on all routes from node i to node j. This means that when paths are

limited to those of length K,
∑

r exp
(
− γ
σ

∑
ij n

od
ijmrsijm(0)

)
is given by the odth entry of the

following matrix sum:

Wm +W 2
m + . . .+WK

m

Showing that all such sums converge in the limit as K → ∞ is equivalent to ensuring

that (I −Wm) is invertible (see, for example Theorem 4.C.6 in Takayama (1985)). That is

(I −Wm)
−1 − I =

∞∑
k=1

W k
m .

This invertibility issue arises in many models of traffic equilibria in which agents have

a distribution of idiosyncratic preferences over routes as in Akamatsu (1996), Akamatsu

(1997), and Allen and Arkolakis (2022). Here I provide a condition in terms of model

primitives which is, to the best of my knowledge, new to the literature in both economics

and transportation. I provide sufficient conditions for the matrix to be dominant diagonal
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and therefore invertible by Theorem 4.C.1 in Takayama (1985). A sufficient condition for

this is that

∑
j:ij∈Em

exp
(
−γ
σ
sijm(0)

)
< 1 ∀i ∈ N , ∀m ∈ M1 . (46)

Since all terms are positive, this simply restates the definition of dominant diagonal ma-

trices on page 381 of Takayama (1985). Note that it is stated purely in terms of model

primitives and depends on three things. Firstly, the condition requires sijm(0) to be suffi-

ciently large: when the cost of crossing each link is too low, the benefits from taking long

paths with cycles do not decline rapidly enough and they may remain attractive as the route

set becomes larger. Secondly it depends on γ
σ
. When the value of time crossing links, γ is

small, this makes the condition harder to fulfill as people care less about the time they spend

crossing links. Similarly, when the shock variance is large, captured by σ the condition is

harder to fulfill. There is greater heterogeneity in preferences over routes and so longer routes

become more attractive for some. Finally, it depends on the network structure through Em.
When the network is densely connected, there are more j’s to sum over for each i, making

the condition harder to fulfill. Importantly, given parameter estimates for σ, γ, and sijm,

condition (46) can be numerically checked before attempting to solve a model with arbitrary

route lengths. This ensures that the defined objects will be well behaved in the limit.

B.2 Computing the Objective Function

I now note how the results of the previous section can be used in the computational results in

Section 3.7 of the paper. In particular in evaluating the term
∑

r exp
(
−
∑

ij µijn
od
ijmr1,r

/σ
)

in the objective function of the program. Analogous to the above define

[
W̃m

]
ij
=

exp
(
−µij

σ

)
if ij ∈ Em

0 otherwise
.

Then when paths are limited to length K,
∑

r exp
(
−
∑

ij µijn
od
ijmr1,r

/σ
)
is given by the

odth entry of

W̃m + W̃ 2
m + . . .+ W̃K

m .

When K is large, we have that the infinite series converges and so

(I − W̃m)
−1 − I ≃ W̃m + W̃ 2

m + . . .+ W̃K
m
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The left hand side is what is used in the algorithm that I implement. In practice, the

approximation becomes good rapidly and approaches numerical precision even for modest

values of K around 50.

B.3 The Supply and Demand of Floor-space

This section provides a micro-foundation for αd, βo in terms of floor-space supply to firms

and households. I assume that the markets are segmented: firms and households consume

floor-space in separate markets that are priced and clear individually and by location. I

show how this leads to the same reduced form expressions as developed in the main text

when 1I = 1 for both the competitive equilibrium problem and in the case of the planner.

This also provides an explicit expression for αd, βo which I use to calibrate the parameters

using supply elasticities from Baum-Snow and Han (2024).

B.3.1 Floor-space Supply

Floor-space is supplied by competitive firms in each location i ∈ N . The market for floor-

space is divided by sector K ∈ {H,F} representing the supply for floor-space to households

and firms. A representative firm in sector K, location i uses material inputs M and land

T in a Cobb-Douglas technology to produce floor-space. They take as given the prices of

floor-space, rKi and land, pTi , in that location as well as the price of materials which are

assumed to be constant across space, pM , and determined exogenously, outside the city’s

economy. The firm’s problem is:

max
Q,M,T

rKi Q− pMM − pTi T s.t. Q =MψiT 1−ψi

Land is fixed for each sector in each location. This could be interpreted as zoning: certain

areas are marked for firms and others for residents.

TKi = T̄Ki

The firm’s first order conditions imply

pMMK
i = ψir

K
i Q

K
i

pTi T
K
i = (1− ψ)rKi Q

K
i

The free entry condition together with the fixed supply of land then imply that the inverse
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housing supply function in a given location and sector is

rKi =

(
pM

ψiT̄ (1−ψi)/ψi

)(
QK
i

)(1−ψi)/ψi
Note that the elasticity of the rental price with respect to housing quantity is (1−ψi)/ψi

which will be fixed in each location to the values from Baum-Snow and Han (2024). The

housing supply function is given by simple rearrangement as:

QK
i =

(
ψir

K
i

pM

) ψi
1−ψi

T̄Ki

B.3.2 Household Floor-space Demand

Consider a consumer who has already made their location decisions over a given workplace d

and home o and focus on their decision on how much housing to consume. I fix all the levels

of population in each home and work location ℓFd , ℓ
H
o and their wage income wd at arbitrary

levels. I will assume that their non-wage income b comes from evenly rebated land rents

in the model and provide an explicit expression for this below. Each consumer takes b, wd

and rHo as given and choose only how to allocate their income between consumption, c, and

floor-space, q. I also assume that there are fundamental amenities in each location u† that

are exogenous. The consumer solves the following problem:

max
c,q

u†o + c+ δ ln q s.t. c+ rHo q ≤ wd + b

The solution for the consumer’s Marshallian demand at an interior solution (which is

assumed throughout) is

qHo =
δH

rHo

Their indirect utility function is therefore:

v(rHo , wd + b) = wd + b− δH + δH ln δH − δH ln rHo + u†o

B.3.3 Firm Floor-space Demand

Firms in combine labor and floor-space to produce the final good in a constant returns to

scale technology. As usual, the scale and number of firms will be arbitrary in the competitive

equilibrium with free entry and a zero profit condition. The representative firm solves:
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max
ℓ,q

ℓ
(
A† + δF ln

q

ℓ

)
− wdℓ− rFd q

The production function is intuitive. The average product of labor is an increasing

but concave function of the amount of floor-space per worker and the function is constant

returns in both floor-space and labor but decreasing returns when floor-space is fixed. This

will create aggregate decreasing returns to scale in each location when the supply of land

to produce floor-space is fixed. Solving the firm’s first order conditions and imposing zero

profits implies:

qFd =
δF ℓFd
rFd

wd = A†
d + δF ln

qFd
ℓFd

− δF

B.3.4 Floor-space Market Clearing

Floor-space markets clear by location and sector. For residential floor-space noting the fixed

levels of ℓFd , ℓ
H
o we have:

ℓHo δ
H

rHo
=

(
ψor

H
o

pM

) ψo
1−ψo

T̄Ho

This gives

u†o−δH ln rHo = u†oδ
H+δHψo

(
ln

(
δHψo
pM

)
− 1

)
+δH(1−ψo) ln T̄Ho +δH(ψo−1) ln ℓHo +δ

H(ψo−1)

Defining :

ūo := u†oδ
H + δHψo

(
ln

(
δHψo
pM

)
− 1

)
+ δH(1− ψo) ln T̄

H
o + δH(ψo − 1)

βo := δH(ψo − 1)

u†o − δH ln rHo = ūd + αd ln ℓ
H
o

Now using Workplace market clearing we have:
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δF ℓFd
rFd

=

(
ψdr

F
d

pM

) ψd
1−ψd

T̄ Fd

Combining this with the firm’s optimality conditions and zero profit condition we find

that:

wd = A†
d + δFψd

(
ln

(
δFψd
pM

)
− 1

)
+ δF (1− ψd) ln T̄d + δF (ψd − 1) ln ℓFd + δF (ψd − 1)

Defining:

Ād := A†
d + δFψd

(
ln

(
δFψd
pM

)
− 1

)
+ δF (1− ψd) ln T̄d + δF (ψd − 1)

αd := δF (ψd − 1)

We get that:

wd = Ād + αd ln ℓ
F
d

Finally note that total land rents in the model are given by:

∑
o

pHo T̄
H
o +

∑
d

pFd T̄
F
d =

∑
o

(1− ψo)r
H
o Q

H
o +

∑
d

(1− ψd)ℓ
F
d δ

F

= −
∑
o

αdℓ
F
d −

∑
o

βoℓ
H
o

When land rents are rebated uniformly across consumers we get that their non-wage

income is given by

b =
−
∑

d ℓ
F
d αd −

∑
o ℓ

H
o βo

L

We can re-express the consumer’s indirect utility, now as a function of ℓFd , ℓ
H
o as:

vod = ūo + βo ln ℓ
H
o + Ād + αd ln ℓd + b

Note that all the expressions here agree with those in the main text, with the only

terms missing being those that concern travel and the idiosyncratic preference terms. Since

conditional on their location and commuting problems, consumers will always choose housing
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and consumption in the way described above. We have therefore shown that a decentralized

market for floor-space for firms and households provides a micro-foundation for the reduced

form expressions provided in the main body of the paper.

B.3.5 Implications for Output Market Clearing

Market clearing for the final good in the economy described above requires total output of

the final good net of payments for materials to equal consumer expenditure on the final

good. That is:

∑
d

ℓFd (A
† + δF ln

qF

ℓF
)−

∑
d

pMMF
d −

∑
o

pMMH
o =

∑
d

wdℓ
F
d +

∑
od

ℓodb−
∑
o

rHo q
H
o ℓ

H
o (47)

The first term on the left hand side gives total production, the second two express pay-

ments to materials. The terms on the write hand side express consumer income from wage

and non-wage income, net of their payments to housing. This section shows that this ex-

pression is equivalent to expression (15) in the main text.

The total output remaining net of costs paid out of the city for materials is therefore

∑
d

ℓFd (A
† + δF ln

qF

ℓF
)−

∑
d

pMMF
i +

∑
o

pMMH
i =

∑
d

Adℓ
F
d −

∑
d

αdℓ
F
d −

∑
o

ψoδ
HℓHo

Noting that rHo q
H
o = δH and defining yd = Adℓ

F
d as in the main text, and rearranging

(47) gives

∑
od

ℓod(wd + b) =
∑
d

yd −
∑
d

ℓFd αd −
∑
o

ℓHo βo

Which is equivalent to (15) when 1I = 1 as desired.

B.3.6 Implications for the Planner’s Problem

I consider the sub-problem of a planner choosing only the amount of floor-space to supply to

firms and households. That is, I suppose that the aggregate variables c, {ℓodmr}, {ℓod}, {ℓFd }, {ℓHo }
have been fixed at an arbitrary level and solve for the optimal choices for floor-space pro-

duction given that. I show that the resulting value function is isomorphic to the planner’s

problem in the main text when 1I = 1.

I assume that the planner must pay materials costs, as in the economy, and faces the
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same supply function for floor-space for firms and households. The planner will choose these

quantities to maximize the total utility produced by production and utility from housing

given the fixed values of ℓFd , ℓ
H
o . Dividing the optimization problem into two stages will lead

to the same solution as the fixed values of the parameters are arbitrary. Such a planner’s

problem, neglecting constant terms, is:

max
{qHo ,},{qFd },{MH

o },{MF
d }

∑
d

ℓFd

[
A†
d + δF ln

qFd
ℓFd

]
−
∑
o

pmM
H
o −

∑
d

pmM
H
d +

∑
o

ℓHo
[
δH ln qHo + u†o

]
s.t.

ℓHo q
H
o =

(
MF

o

)ψo (
T̄Ho
)1−ψo

qFd =
(
MF

o

)ψo (
T̄Ho
)1−ψo

The first term in the objective function represents total production with the second

and third giving materials costs. The final term is the total utility produced from housing

and residential amenities. At fixed ℓFd , ℓ
H
o , the planner will always choose to maximize this

objective function. Eliminating qHo , q
F
d from the problem by using the constraints we obtain

the following unconstrained, concave problem:

max
{MH

o },{MF
d }

∑
d

ℓFd

[
A†
d + δFψd lnM

F
d + δF (1− ψd) ln T̄

F
d − δF ln ℓFd

]
−
∑
o

pMMH
o −

∑
d

pMMH
d

+
∑
o

ℓHo
[
u†o + δh lnψo lnM

H
o + δH(1− ψo) ln T̄

H
o − δH ln ℓHo

]
The first order conditions for the optimum imply that

MH
o =

ℓHo δ
Hψo
pM

MF
d =

ℓFd δ
Fψd
pM

Plugging in the solution gives the value function for this problem as a function of the

fixed variables:
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∑
d

ℓFd

[
A†
d + δFψd

(
ln
δFψd
pM

− 1

)
+ δF (1− ψd) ln T̄d + δF (ψd − 1) ln ℓFd

]
+

∑
o

ℓHo

[
u†o + δHψo

(
ln
δHψo
pM

− 1

)
+ δH(1− ψo) ln T̄

H
o + δH(ψo − 1) ln ℓHo

]

Using the same definitions for αd, Ād and βo, ūo as we did above we find that this yields

∑
d

ℓFd
[
Ād − αd + αd ln ℓ

F
d

]
+
∑
o

ℓHo
[
ūo − βo + βo ln ℓ

H
o

]
When 1I = 1, this coincides with the expression for the planner’s problem in the text at

a given level of ℓFd , ℓ
H
o completing the demonstration of the isomorphism.

Note that the expression for total consumption in the main text includes the utility

benefits stemming from the fact that land is owned by the city. This is captured in the

−
∑

d ℓ
F
d αd −

∑
o ℓ

H
o βo term.

C Data

C.1 Construction of Zones

In order to obtain a set of locations for the model I use two sources of data. Firstly, I

make use of county subdivisions from the US census for New York State and New Jersey.

I take a buffer of 20km around the five boroughs in New York City and include all county

subdivisions which intersect with the buffer. I also take taxi zones from New York’s Taxi

and Limousine Company. These describe neighborhoods and provide a more granular view

of locations within New York City itself to help capture a more detailed view of traffic

routing. I aggregate both of these sets of locations for two reasons. Firstly, the regions differ

in geographic size and so I create aggregate zones that are more similar in terms of area.

Secondly, for computational reasons, it is useful to slightly reduce the number of regions

considered for the analysis.

In order to aggregate these areas I proceed by considering the areas outside New York

City and inside separately. I sequentially merge zones by taking the smallest zone and

merging it with its nearest neighbor in terms of centroid distance, repeating this process

until the desired number of locations is achieved. For the areas outside New York City, I

merge zones until 20 locations remain. For the areas within New York City I merge zones

until 100 locations remain. This enables me to capture granular commuting flows within
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New York City while also allowing for in-traffic from the surrounding areas. The locations

under consideration account for 89% of all commuters into New York City.

C.2 Department of Transportation’s Automated Vehicle Counts

In order to measure traffic flows within the city I make use of the New York Department of

Transportation’s Automated Vehicle Counts. These provide automated counts of the number

of vehicles passing through a given road segment by hour of the day on different days. The

number of observations per segment, and the dates it is recorded, vary by segment. I match

these counts to the Department of City Planning’s LION file for road segments to find their

geographical location. This results in 2,344 road segments that are displayed in Figure 11.

They cover a large section of New York City and are relatively well dispersed throughout

the five boroughs.

Figure 11: Traffic Count Locations

These counts are then aggregated to the zones in the previous section to find the bilateral

mean flow of traffic per lane between pairs of zones in the study area. Lane information

comes from the LION data and I take means first by road segment and hour of the day for

weekdays and then across roads within each pair of zones. This is used in the estimation of

the congestion technology.
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C.3 Open Street Map Data and Covariates

For detailed data on roads throughout the whole study area I make use of Open Street Maps

(OSM). This provides the exact layout of roads and junctions in the area. I use Boeing

(2017) to process the raw shapefiles from OSM into a set of nodes and edges. An example

of part of this from lower Manhattan and Brooklyn is presented in figure 12

Figure 12: Open Street Maps Data

To obtain the network obtained in the main text, I create a directed link between two

zones whenever there is a road that passes in that direction between them. I also use the

data from open street maps to create covariates to parameterize the congestion function

across links. The full set of covariates is presented in the table below. All variables are

included separately for the source and target zone of a link so that the covariates represent

the directed nature of the network.

This leads to a total of 115 covariates that are used in the estimation of the congestion

function. Given, the large number included, the machine learning techniques discussed in

the main text are used to avoid over-fitting and return a good estimate of the congestion

technology.

C.4 LODES and ACS Data

I use the Longitudinal Employer-Household Dynamics Origin-Destination Employment Statis-

tics from 2019 for commuting flows. I use primary jobs (JT01) for 2019 as the main source of

data. Note that, as highlighted by Dingel and Tintelnot (2020) and detailed in Graham et al.

(2014), the LODES counts have noise added to preserve anonymity. The data is provided at

the tract level and issues with noise become increasingly important at more granular levels.

Since I aggregate a large number of census tracts into zones, this is less of a concern in the
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Variable Description Further Details Number of Variables

Length of edges 2

Length of lanes 2

Quantiles of lane distribution At {0, 0.25, 0.5, 0.7, 1.0} 10

Quantiles of speed limit At {0, 0.25, 0.5, 0.7, 1.0} 10

Quantiles of freeflow time by road At {0, 0.25, 0.5, 0.7, 1.0} 10

Freeflow time of the link 1

Counts of road segments by type Types: {motorway, motorway
link, primary, primary link, res-
idential, secondary, secondary
link, tertiary, tertiary link, trunk,
trunk link, unclassified, living
street, crossing, road, busway}

32

Quantiles of node degrees At {0, 0.25, 0.5, 0.7, 1.0} 10

Counts of junction types Types: {crossing, junction, stop,
signals, turning circle, turn-
ing loop, crossing, motorway
junction, traffic signals-crossing,
gantry, mini-roundabout, trail-
head, give way, priority, bus stop,
disused}

32

Distance to the CBD 2

Longitude and Latitude 4

Table 1: Included Covariates Table

present study. I also find that 96% of commuting pairs have non-zero flows at the level of

aggregation I consider. Secondly, I use the American Commuting Survey (ACS) 5-year data

for 2019 to find data on wage income, hours worked, and commuting mode shares. Again, I

aggregate the data to the level of zones defined in C.1.
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